Click the appropriate button for the system type: 'First Order' or 'Second Order'.
At first enter the coefficient values of the transfer function and sampling time. Here default sampling time T is 0.1.
Click on 'G(s)' button to get the given transfer function.
Clicking on 'Discretization' dropdown-menu for different methods.
Click on the desired option to get the discrete form of the system.
Click on 'Clear' button to get results for new transfer function.
$$G (s) = \frac{b_0 s + b_1}{a_0 s + a_1}$$
Enter the value b0 :
Enter the value b1 :
Enter the value a0 :
Enter the value a1 :
Enter the sampling time T (sec) :
Transfer Function of Continuous System
G(s) =s
+
s
+
$$G (s) = \frac{b_0 s^2 + b_1 s + b_2}{a_0 s^2 + a_1 s + a_2}$$
Enter the value b0 :
Enter the value b1 :
Enter the value b2 :
Enter the value a0 :
Enter the value a1 :
Enter the value a2 :
Enter the sampling time T (sec) :
Transfer Function of Continuous System
G(s) =s2
+ s
+
s2
+ s
+
Partial Fractions form of given system, G(s):
$$ G (s) = \frac{b_0 s + b_1}{a_0 s + a_1} = \frac{b_0}{a_0} + \frac{e_0 }{a_0 s + a_1} = \frac{b_0}{a_0} + \frac{A_1}{s + (p_1)} $$
G(s) =s
+ s
+ = + s
+
= + s +()
$$ G (s) = \frac{b_0 s^2 + b_1 s + b_2}{a_0 s^2 + a_1 s + a_2} = \frac{b_0}{a_0} + \frac{e_0 s + e_1}{a_0 s^2 + a_1 s + a_2} = \frac{b_0}{a_0} + \frac{A_1}{s + (p_1)} + \frac{A_2}{s + (p_2)}$$
G(s) =s2
+ s
+