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Abstract: Condition based maintenance (CBM) strategies are widely applied in utility companies instead of 
time based maintenance (TBM), in order to reduce the maintenance costs. However, the extent of this 
reduction depends on the quality of the diagnosis. In this paper, we simulate the total lifecycle cost to 
operate 10000 cable connections for 100 years. Both time-based (i.e. TBM) and condition-based periodic 
maintenance (i.e. CBM) strategies are applied in the simulation. We assume that the failure probability vs. 
health condition index relationship satisfies a Weibull distribution estimated from laboratory test data. The 
diagnostic index is simulated through multiplying the health index h with a factor. This factor is assumed to 
follow a lognormal distribution with scale parameter η, and this η value indicates the error of diagnosis. From 
the simulation results, we learn that this diagnosis error indicator η and the cost of diagnosis have more 
significant influence than the failure loss on the decision between TBM and CBM. In addition, several 
methods to estimate the η value have been proposed. As a result, a generic process has been established 
for asset manager to judge whether a diagnosis method can be applied in CBM strategy and create 
economic profit.   

 
 

1 INTRODUCTION 

High voltage components are maintained 
preventively to reduce the risk of failure in their 
operation. Normally, two types of preventive 
maintenance strategies are applied on high voltage 
components, as [1] describes:  

(1) Time Based Maintenance (TBM): an equipment 
maintenance strategy based on a fixed period of 
time, independent of the wear of the component at 
that time. Therefore, the strategy has just one 
parameter, the maintenance interval. In this paper 
we use TBM strategy to make maintenance for all 
the apparatus with optimal periodic interval. 

(2) Condition Based Maintenance (CBM): an 
equipment maintenance strategy based on 
measuring the condition of equipment in order to 
choose appropriate action to avoid the failure in 
advance. Based on condition state, we use CBM 
strategy to make sequential maintenance for some 
part of the apparatus with periodic interval. 

Condition based maintenance (CBM) strategies 
are widely applied in utility companies, which is 
commonly believed to provide more information 
about the health condition of components and 
achieves economic profits. However, the 
advantage of condition based maintenance relies 
on several conditions.   

In this paper, a population of 10000 XLPE cable 
connections is installed at the initial year, and we 
simulate the total lifecycle cost (LCC) of the 

population within a decade similar as in [2]. Both 
time-based maintenance (i.e. TBM) and condition-
based periodic maintenance (i.e. CBM) strategies 
are applied in the simulation. 

2 INSTRUCTIONS OF SIMULATION MODELS 
AND PARAMETERS 

2.1 The reliability model 

 

Figure 1: Relationship between four different 
events in the simulation model 

The three most important variables in reliability of 
the apparatus are the service life t, the health 
condition index h and the failure probability f. In our 
previous research [2], the relationship between the 
maximum water tree length and failure probability 
of XLPE cable is investigated. In this paper, we 
use the water tree length, labelled with l, as the 
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health condition index h. The relationship between 
l (or h), service life t and failure probability f are 
retrieved as follows and will be applied in our LCC 
calculations in Section 3.  

 
Figure 2:  The Weibull distribution of breakdown 
voltage in the 6.6kV cables with different maximum 
water-tree length [3]. 

From the accelerating degradation experiment of 
water-tree in cables, the Weibull distributions of 
breakdown voltage in the cables with different 
maximum water-tree lengths (Figure 2) and the 
increase of the maximum water-tree lengths with 
time (Figure 3) can be obtained [3]. The 
accumulated failure probability F(l) under the rated 
voltage in the cable with the maximum water-tree 
length of l can be calculated From Figure 2. The 
average annual increase of the maximum water-

tree length l can be calculated from Figure 3. 
Then the annual failure probability in the cable with 
the maximum water-tree length of l is expressed as 

)()()( lFllFlf                     (1) 

Moreover, the variation of the distribution of the 
maximum water-tree length with time (i.e. the 
distribution of the maximum water-tree length Nk(l) 
in the kth year) can be also obtained from Figure 3. 

 
Figure 3:  The increase of the maximum water-
tree lengths with time in 6.6kV cables (The voltage 
frequency in the accelerating degradation was 
1000Hz) [3]. 

Similarly to [4], we assume that a certain physical 
health condition index h, i.e. water tree length l, of 
power apparatus in the t th year follows logarithmic 
norm distribution as follows, 

2

22

1 (ln ( ))
( ) exp[ ]

2 ( )2  ( )
t

l t
N l

tl t






 



 
(2) 

0( ) ln( )t l t l     (3)  

2 2( )t t          (4) 

where l0 is the initial water tree length, l is the 
average annual increment of the water tree length, 

0 is the initial standard deviation, and σ is the 
average annual increment of the variance.  

We assume that the failure probability f vs. health 
condition index h (or l) relationship satisfies a 
Weibull distribution estimated from historical data 
[2-4].  

( ) 1 exp( ( ) )Bl
f l

A
    (5) 

where A is scale parameter and B is shape 
parameter. In the simulation, we use l0=500, Δl=70, 
σ0=0.618, A=9500 (μm) and B=4. These are the 
parameters achieved through laborartory 
accelerated aging tests on cables in [3].   The 
parameter A represents the characteristic length of 
failure, B represents the shape of the failure 
distribution, and σd0 represents the initial difference 
in the ex factory quality of cables. 

2.2 Diagnosis index and error 

The length of water tree, the health condition index 
h  in this paper, is a physical variable growing with 
service life and it influences the failure probability 
and, consequently, the remaining life. 
Unfortunately, it is a hidden variable which cannot 
be observed directly from field components due to 
the complexity of the failure causes and the harsh 
operating environment. Alternatively, diagnostic 
indices, such as partial discharges, are frequently 
observed as an indicator of health condition based 
on given knowledge rules. We label it as d in 
Figure 1.  

As an observed value, the diagnostic index d does 
not equal to the health index h. We define the ratio 
between diagnostic index d and health condition 
index h as e:  

d h e   (6) 

2

0 0d    
 

(7) 

Multiple factors can influence the e, such as 
reliability of sensors, precision of measurements, 
etc. In this paper, we only consider the insufficient 
volume of diagnostic data as the cause of 
diagnosis error. To be applied in CBM, diagnosis 
data are frequently analyzed statistically, in order 
to estimate a threshold value of diagnosis index. If 
the diagnosis index of a component is above this 
threshold, it is suggested to be replaced [5]. In 
statistics, the influence of data volume on the 
precision of this threshold is indicated with 
confidence bounds. And the confidence bounds on 
the threshold are recommended to be modelled 
with log-normal distribution [6]. Therefore, we 
assume that e has the below probability density 
function (pdf): 
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This lognormal distribution has location parameter 
as 0, and the variance/scale parameter η. In this 
paper, this η is used to indicate the diagnosis error.  

2.3 Costs of Maintenance Strategies 

Three types of costs are included for each 
maintenance strategy: the failure loss (FL), 
replacement expenditure (RE) and diagnosis 
expenditure (DE). The difference between different 
types of repairs and partial replacements are 
neglected. Nor do we consider disposal. The FL 
includes multiple events such as damages, risks, 
loss of energy and unplanned replacements. Since 
a replacement is included, FL is always larger than 
RE. In the simulation, RE is always normalized to 1. 
FL is set to 20 according to the case of cables in [8] 
and DE is 0.05 according to [2].  

ECOC is defined to be the total expected cost of 
one connection to serve one century. Thus, we get 
ECOC=LCC/10000. Logarithmic coordinates are 
used for comparability of ECOC value between 
CBM and TBM. The interest rate is assumed to be 
5%. 

100

0

* ( ) * ( ) * ( )

10000 (1 0.05)

 


 


f r d

i
i

FL N i RE N i DE N i
ECOC  (9) 

where Nf, Nr and Nd means respectively the 
number of 10000 components to fail, to be 
replaced and to be diagnosed in the i th year. 

The total life-cycle cost LCC (i.e. the summation of 
the total failure loss TFL, the total replacement 
expense TRE and the total diagnosis expense 
TDE) can be also calculated by the method in [2]. 
The minimum total life-cycle cost corresponds to 
the optimized diagnosis parameters.  

3 SIMULATION RESULTS 

3.1 Quality of diagnosis 

In many cases, the process of diagnosis helps to 
reduce redundant maintenance activities and 
corresponding costs. However, the extent of this 
reduction depends on the accuracy of the 
diagnosis and maintenance. 

As the rise of parameter η, the dispersion of 
condition state within the population will be lager; 
further more increases the probability of faults in 
diagnosis and leading to the increase of ECOC. 

 

Figure 4: Relationship between ECOC and 
parameter η in TBM and CBM strategy at 
corresponding parameter A and B shown in Table 
1 (σ0=0.618, Δσ=0.01, FL=20, RE=1, DE=0.05). 

We can see from Figure 4 that as the rise of η, 
indicating that the quality of diagnosis becomes 
poorer, the optimal ECOC of CBM increases. If the 
quality of diagnosis is better (i.e. when η is smaller), 
there will be the advantage of CBM over TBM. 
Influence of η is larger than the economic 
parameters. 

If both interval and threshold are optimally selected 
for CBM, CBM will always keep its economic 
advantage. Larger diagnosis error will considerably 
reduce the economic advantage of the optimal 
CBM. 

When η is large, the optimal interval CBM tend to 
converge to the optimal interval of TBM, and the 
optimal threshold of CBM is very low, i.e. always 
replace after diagnosis. In this situation, CBM has 
little difference from TBM. If diagnosis interval is 
not optimally selected, the CBM will even cost 
more than TBM with large η, as the “CBM, interval 
= 8 years” line shows in Figure 4. 

In conclusion, maintenance strategy CBM is of 
advantage when the diagnostic quality is better. 

3.2 Change on economic parameters  

Three types of cost are included for different 
strategies: the failure loss (FL), replacement 
expenditure (RE) and diagnosis expenditure (DE). 
The difference between different type of repairs 
and partial replacements are neglected. Neither do 
we consider the disposal. The FL includes multiple 
damages, risks, loss of energy and unplanned 
repair. The RE includes both the expenses 
happened to replace the former cable connection 
with a new one and the market price of the new 
cable connection. In the simulation, we normalize 
RE to 1 and set FL=20 according to the case of 
cable in [8], and DE=0.05 according to [2]. 
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Figure 5: Relationship between ECOC and DE/RE 
in TBM and PDM strategy at different η (Δσ=0.01, 
σ0 =0.618, FL=20).  

By changing the relative value of the diagnosis 
expense (DE), we get the relationship of ECOC 
and the diagnosis expense at both TBM and CBM 
maintenance methods. The ECOC of TBM and 
CBM at different relative value of DE is shown in 
Figure 5. We fix diagnosis interval to 8 years and 
always choose the optimal threshold for each pair 
of DE and η.  

Figure 5 shows that the selection between CBM 
and TBM depends on both diagnosis error and 
cost. When η=3, we will not choose CBM even if 
relative DE equals to zero. When relative DE is 
bigger than 0.2, we will not choose CBM even if 
η=0. The approximate values when ECOC of CBM 
equals to that of TBM is shown below: η=3, 
DE/RE=0; η=2.4, DE/RE=0.05; η=1.8 DE/RE =1; 
η=0.6, DE/RE =0.2 

As the increase of relative DE, the advantage 
gained by maintenance method CBM over TBM 
becomes less. If quality of diagnosis is poor, TBM 
strategy is always preferred. 

By changing the relative value of the failure lost 
(FL), we get the relationship of ECOC and the 
relative failure lost FL at both TBM and CBM 
maintenance methods, which is shown in Figure 6.  

FL cannot change the choice between TBM and 
CBM. But large FL can enlarge the difference 
between CBM and TBM. If CBM do not choose 
optimal threshold, it will become worse than TBM. 
When the cost of failures is extreme cheap, there 
is no need to choose TBM/CBM, which means 
corrective strategy is enough. 

In conclusion, if diagnosis is not accurate, the 
relative DE will influence the advantage CBM is of 
over TBM. However, the diagnosis quality itself will 
not change the relative advantage of CBM over 
TBM.  

 

Figure 6: Relationship between ECOC and FL/RE 
in TBM and PDM strategy at different η (Δσ=0.01, 
σ0 =0.618, DE=0.05). 

3.3 Estimation of diagnosis error 

Since h is not observable from field components, 
samples of e cannot be directly achieved through 
dividing d by h. In this situation, several methods 
can be chosen to estimate the diagnosis error 
indicator η. 

Firstly, the distribution of d with service age t will 
be lognormal, because it is a multiply product of e 
and h, two lognormal distributed random variables. 
According to the attributes of lognormal distribution, 
η can be calculated from variance of d and h, when 
data of d and h of cables at a certain age is 
available:  

2 2
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The parameter η of distribution of observed 
diagnostic index d is the same with that of health 
condition h and parameter σd0 of distribution of 
observed diagnostic index d can be gained by 
following method: 
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Secondly, the distribution of d when failure occurs 
can be modelled with Weibull distribution. This is 
an approximation derived from the two facts: (1) 
the health condition index h is positively skewed, 
as Figure 3 shows; (2) the lognormal distributed e 
is also positively skewed. Consequently, fitting 
their multiply product d into a positively skewed 
Weibull distribution is suitable. When A=9500 and 
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B=4 for h, the A and B of d are related to η in the 
way shown in Figure 7. If data of d is available for 
some components before their failures, the Weibull 
parameters can be estimated for d, and η, can be 
further derived through comparing Weibull 
parameters of both h and d. The new parameters A 
and B for d are simulated by fitting new Weibull 
distribution based on the combination of one 
Lognormal distribution for η with original Weibull 
distribution of original parameters A and B. The 
diagnostic error increases the value of η in 
equations (7) correspondingly change the 
parameter A and B as well as the σd0.  

 

 

Figure 7: Effect of increasing diagnosis error η on 
the scale parameter A and shape parameter B of 
the Weibull failure probability. 

The above two methods are sometimes difficult to 
be applied because the diagnosis data are not 
available before installation or exactly before 
failure. In this situation, the third method can be 
utilized. It uses the “probability of failure after 
diagnosis”[5].  

Table 1: The probability of failure after diagnosis. 

Failure 
Probability 

Diagnosis  
index 

life>=5 Life<5 

d<dt=2800 
State=Green 

1-Pr Pr 

d>= dt=2800 
State=Red 

(PrII) (1-PrII) 

 

For example, we take dt as the boundary of “Green” 
and “Red” states. “Green” state is defined as a kind 
of condition state in which component has a good 
diagnosis index; while “Red” state is defined as a 
condition state in which component has a bad 
diagnosis index as shown in Table 1. “Green” state 
is set to keep operation until next diagnosis and 
“Red” state is set to replace immediately. If 1000 
components are diagnosed and their d are below 
2800, but 30 of them fails within 5 years after 
diagnosis, the η will be estimated as 0.5. We can 

only prove the probability of failure occurs in less 
than five years on conditions that the component is 
in Green state, i.e. Pr in Table 1. Accordingly, the 
probability (1-Pr) can be deduced. However, the 
probability of failure occurs in more than five years 
on conditions that the component is in Red state, 
i.e. PrII, can not be observed. 

 

Figure 8: Probability of a component to fail within 5 
years from the time when dt=2800 is observed on it. 

The Pr in Table 1 is the integral of three factors: 
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They are 

(1) P3: the conditional pdf of diagnosis error, given 
diagnosis index dt:  

 3P PDF | 2800t t th e d d   
 

(13) 

(2) P2: the conditional pdf of increase of health 
condition index Δh, given the diagnosis index dt = 
2800, and the health condition index is calculated 
from diagnosis error ht. 

 2 5P PDF | , 2800t t t th h h h d   
 

(14) 

(3) P1: the conditional probability of failure, given ht, 
Δh and dt 
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failh  satisfies Weibull distribution as in equation(5), 

thus,  
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where ht+5 follows lognormal distribution with 
(location parameter ln(2800+5*Δl) and scale 
parameter square(σ^2+Δσ*5); ht follows lognormal 
distribution with (location parameter ln(2800) and 
scale parameter σ as in equation(2). Thus Δh as 
the quotient between ht+5 and and ht, satisfies a 
lognormal distribution with location parameter 
ln(2800+5*Δl)-ln(2800) and scale parameter 
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square(Δσ*50=0.01*5). We know from section 2.2 
that Δl =70 and Δσ=0.01.Consequently, P2 equals 
to 

     2P lognCDF ,ln 2800 5*70 ln 2800 , 0.01 5h    
 

(17) 

As we know, e follows lognormal distribution with 
location parameter 0 and scale parameter η. dt is a 
deterministic number 2800. Thus ht = dt /e* follows 
lognormal distribution with location parameter 
ln(2800) and scale parameter η.

 
  3P lognCDF ,ln 2800 ,th 

 
(18) 

If replace dt=2800 with other threshold values or “5 
years” with other periods, the probability of failure 
can also be calculated 

In addition, multi-factors can influence the aging 
process of apparatus which leads to unexpected 
failure probability. The dispersion of load and 
environment, such as soil condition, between 
apparatus are represented by the variance Δσ in 
equation (4). It proves in the former discussion that 
Δσ can not change the effect of diagnosis quality, 
but also influence the economic merit of CBM. 

4 CONCLUSION 

The calculation results show that diagnosis error 
indicator η, together with the diagnosis expenditure 
DE, makes decisions between TBM and CBM. FL 
does not change the choice between TBM and 
CBM. The quality of diagnosis and the variance of 
load and environment between apparatus will 
influence the economic merit of diagnosis strategy, 
CBM. The diagnosis may not always be more 
beneficial to the economic feasibility of 
maintenance rules, in which the quality of 
diagnosis plays an important role.  

The η value can be estimated through several 
methods, namely (1) the distribution of diagnosis 
index at certain service life, (2) the distribution of 
diagnosis index before failure, (3) the rate of failure 
within 5 years after diagnosis. Asset manager can 
use these methods to judge diagnostic tools and 
maintenance strategies before their application. 
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