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Abstract: Simple functional forms are assumed for the statistical models, and therefore 
they are usually Weibull and Normal (or Lognormal) distributions for high voltage SF6 
circuit – breakers. The kind type of model is based on the empirical data obtained from 
the statistical surveys on failure, and may use goodness – of – fit test for the choice of 
failure – time distribution. The parameters of the distribution are based on the reliability 
data which are determined by the least-squares technique or the maximum likelihood 
method. In this paper, a statistical approach is developed for individual characteristic 
parameter of the high voltage circuit breakers such as SF6 leakage, N2 leakage, or oil 
leakage and control- and protection problem, etc. 
 

 
1 INTRODUCTION 

In general, fitting a theoretical distribution is 
preferred over empirically developing a model. 
First, empirical models do not provide information 
beyond the range of the sample data. In reliability 
engineering the tails of the distribution are of most 
interest. Second, there is an interest in determining 
the probabilistic nature of the underlying failure 
process. A sample is only a small random part of 
the population of failure times, and it is the 
distribution the sample came from and not the 
sample itself that we want to establish. Third, often 
the failure process is a result of some physical 
phenomena that can be associated with a 
particular distribution. Fourth, small sample sizes 
provide very little information concerning the failure 
process. However, if the sample is consistent with 
a theoretical distribution, then much stronger 
results based on the properties of the theoretical 
distribution are possible. Fifth, the traditional 
parameters of a statistical model (e.g., mean time 
to failure and standard deviation) are not of primary 
interest. Instead, reliability research is interested in 
specific reliability measures or particular 
characteristics of a failure-time distribution (e.g., 
failure probabilities, failure rates, remaining 
lifetime, etc.). Finally, use can be made of the 
theoretical reliability model in performing more 
complex analysis of the failure process. Without an 
analytical reliability model to use, it is difficult to 
derive more complicated relationships, such as the 
preventive maintenance reliability model. 

The primary approach taken so far is to treat the 
occurrence of failures as a random process. As a 
consequence, a reliability model must be 
developed statistically. Through goodness-of-fit 
tests the analysis of failure data can be performed 
in deriving an acceptable reliability model. The 
methods commonly used for parameter estimation 
are maximum likelihood estimator and best linear 
unbiased estimator. Based on massive measured 

data, it is reasonable to ask which statistical 
distribution or model parameter is better and more 
appropriate in terms of such failure criteria.  

2 FAILURE PROBABILITY 

It is commonly recognized that the statistical 
characteristics of component can be represented 
by appropriate distribution functions. For the 
statistical evaluation of data obtained from the 550 
kV SF6 circuit breakers, the most popular models 
are Weibull distribution and lognormal distribution. 
The failure probability F(t) of the Weibull 
distribution is given by 
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where� γ and θ are the shape and scale 
parameters, respectively.  

A typical expression for the failure rate h(t) is 
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Let t be the natural or logarithm of the failure time 
for normal or lognormal distribution respectively. 
The cumulative distribution function of normal or 
lognormal distribution is 
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where µ, σ and Φare the mean value, the standard 
deviation and the cumulative normal distribution 
function.  

The cumulative normal distribution function Φis 
defined as      
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Thus, the failure rate function of the normal 
distribution is  
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The reliability function of the normal distribution 
R(t) is given below 

When multiply censored data are present, the 
likelihood function must be modified to reflect the 
fact that at the censored times no failure occurred. 
The objective of the method is to derive, directly 
from the failure times, the failure distribution. Let ti 
be the ordered failure time and ni be the size at 
risk, a logical estimate for the distribution function 
F(t) is 
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For the collected data, one should hypothesize a 
distribution that the failure times came from the 
specified distribution. It is for these reasons that a 
goodness-of-fit test is applied for each of the 
distributions. The goodness of fit of a statistical 
model describes how well it fits a set of 
observations. Measures of goodness of fit typically 
summarize the discrepancy between observed 
values and the expected values under the model in 
question. One way is to construct a sum of 
squared errors divided by the variance of the 
measurement error σ2: 
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where O and E are the observed and expected 
number of failures respectively. 

Once one or more distributions have been 
identified, we need to estimate the parameters of 
the probability distribution that describes the failure 
time of the population subjected to the observation. 
Clearly, the accuracy of the estimate of the 
parameters depends on the sample size and the 
method used for estimating the parameters. The 
maximum likelihood estimator (MLE) is the 
preferred estimates of the distribution parameters. 
This can be accomplished by defining the 
likelihood function in the following manner: 
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where ζ is the unknown parameter, F is the set of 
indices for the failure times, and C is the set of 
indices for the censored times. t+ is a censored 
time.  

We take the logarithm of the equation (8) and then 
the derivatives of the logarithmic function with 
respect to γ and θ. This results in the following two 
equations:  
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where r is the number of censored components. 
The MLE of γ and θ� can be obtained by solving the 
equations (9) and (10) simultaneously. 

Let ti be the natural or logarithm of the i-th failure or 
censored time for normal or lognormal distribution. 
Define the failure rate 
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Given initial values for µ and σ, recursively solve 
for µ and σ 
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The remaining lifetime RLT(t) can be determined 
by the failure probability F(t): 

                         

1 ( )
( )

1 ( )t

F x
RLT t dx

F t

∞ −=
−∫

                   (15) 

3 CASE STUDIES 

To simulate the failure probability and to estimate 
the failure rate and the remaining lifetime of the 
high voltage SF6 circuit breakers, the statistical 
survey on failure probability with the operational 
history was gathered from the practical operational 
experiences. The useful information about the 
occurrences of failure with the location and the 
mode of failures for 550 kV SF6 circuit breakers is 
given by [1-2]. The set of data comes from a large 
population of 550 kV SF6 circuit breakers with a 

XVII International Symposium on High Voltage Engineering, Hannover, Germany, August 22-26, 2011



relatively large number of failures. These data help 
us to develop the reliability model.  

We will test via simulation which theoretical model 
will provide the most accurate estimates. A 
goodness-of-fit test defines the best fit as one that 
minimizes the sum of squared errors between the 
observed data and the fitted distribution (Table 1). 
As a rule of thumb, a large χ2 indicates a poor 
model fit. However  χ2<1 indicates that the model 
is over-fitting the data. In principle a value of χ2=1 
indicates that the extent of the match between 
observations and estimates is in accord with the 
error variance.  

Table 1: Distributions with the model parameter 
according to the goodness-of-fit test 

No γ θ χ2 µ σ χ2 

1 1.55 1.85·104 1.26 1.05·104 4.28·103 1.22 
2 4.35 8.85·103 1.09 8.16·103 2.25·103 1.10 
3 0.78 3.9·104 0.46 10.76 2.41 0.46 
4 0.85 4.85·104 2.54 10.46 1.83 3.47 
5 0.57 9.74·105 0.87 19.05 6.1 0.81 
6 1.06 8.48·104 2.24 12.84 2.55 2.21 
7 3.5 8.12·103 2.68 9.02 0.57 1.88 
8 1.19 2.37·104 1.81 10.34 1.69 1.36 
9 3.1 8.37·103 0.57 7.43·103 2.69·103 0.57 
10 3.3 1.08·104 1.44 9.39·103 3.04·103 1.53 
11 3.09 1.2·104 1.52 1.01·104 3.31·103 1.49 
12 2.8 1.38·104 2.14 1.11·104 3.82·103 2.08 
13 4.25 1.03·104 1.66 1.04·104 3.49·103 1.60 
14 2.19 1.87·104 6.18 10.12 1.01 6.33 
15 0.77 1.09·105 1.55 11.43 2.14 1.60 
16 2.44 1.53·104 1.15 1.06·103 3.48·103 1.12 
17 1.75 3.21·104 2.09 1.44·104 5.24·103 1.71 
18 1.12 5.58·104 3.73 11.3 1.86 3.76 
19 2.69 1.52·104 1.74 1.22·104 4.39·103 1.66 
20 4.16 8.64·103 0.97 7.8·103 2.15·103 0.96 
21 1.58 2.12·104 1.60 9.63·103 3.60·103 1.34 
22 2.62 1.48·104 1.57 1.15·104 4.01·103 1.46 
23 0.37 8.78·106 2.00 17.85 6.07 1.95 
24 0.58 8·104 0.66 16.22 4.66 0.64 
25 0.63 7.49·104 0.89 16.12 4.31 0.85 
26 1.49 3.59·104 3.60 1.5·104 5.89·103 3.19 
27 0.89 1.87·104 2.54 13.26 2.69 1.37 
28 0.41 4.46·107 2.16 21.49 6.55 2.12 
29 0.8 3.82·104 5.88 14.46 3.2 5.73 
30 1.86 2.14·104 3.39 9.0·103 2.99·103 3.28 
31 0.57 7.49·106 3.05 19.47 5.02 2.95 
32 0.87 5.16·104 4.60 15.1 3.14 4.91 
33 2.57 1.16·104 0.71 9.3 0.63 0.71 
34 4.02 1.14·104 3.35 1.01·104 2.81·103 3.0 

 

Since the normal or lognormal distribution does not 
vary in shape, estimates made assuming a normal 
or lognormal distribution may be closer to the true 
values (Figures 10, 11, 14, 15). It is also observed 
that the selection of the failure – time distributions 
not only depends on the performance of failure, but 
it also depends on the sample sizes. If the sample 
size is large, the Weibull distribution provides a 
more accurate estimate (Figures 3, 4, 7, 8). The 
infant mortality is known to follow a Weibull 
distribution (Figure 3). In certain cases the Weibull 
distribution is very similar to the normal or 
lognormal distribution. For a single sample, several 

distributions will be hypothesized and tested. As a 
result, it is often the case that more than one 
distribution will have an acceptable least-squares 
fit or will pass a goodness-of-fit test. The engineer 
must select die best distribution from among the 
acceptable distributions. 

The parameters of such distribution function can 
be properly determined based on the given data 
and the availability of a failure – time distribution. 
The method of maximum likelihood provides an 
efficient and unbiased estimator of the distribution 
parameters. We compare the theoretical and 
observed results that the theoretical and observed 
results match well.  
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Figure 1: Calculated and measured failure 
probabilities for the N2 leakage in the pressure 
control switch with Weibull distribution 
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Figure 2: Calculated and measured failure 
probabilities for the N2 leakage in the pressure 
control switch with Lognormal distribution  
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Figure 3: Calculated failure rate for the N2 leakage 
in the pressure control switch with Weibull 
distribution 

All these distributions have been used effectively 
to analyze lifetime data in the reliability analysis. 
The results of the analysis are used to estimate the 
failure rate, the remaining lifetime and the number 
of failures in coming years. Base on the analysis it 
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can be concluded from Figures 7, 11 and 15 that in 
the all population of circuit breakers, 65% of the 
failures are a result of aging in the steep slope of 
wear-out region of the bathtub curve. The other 
failure rates of circuit breakers have the decreasing 
trends and the longer remaining lifetime whereas 
70% of decreasing failure rates are involved in 
control- and protect system (Figure 3). For the 
mechanical defect of high pressure accumulator, 
pneumatophore in oil circuit and oil leakage of 
parallel capacitor it can be seen that the failure 
rate is relatively stable in coming years. The 
hydraulic valve and hydraulic circuit, air 
compressor (Figures 5 to 8) as well as count 
switcher are the components with the highest 
contribution of failures and failures can be 
expected in coming years. The SF6 leakage of 
circuit breakers (Figures 9 and 12) and the 
overheat of primary terminal (Figures 13 and 16) 
shall also be paid attention due to their high failure 
rates. They show the most rapid change of the 
remaining lifetime at the same service time. It is 
recognized from Table I that the leakage is the 
primary reason to reduce the lifetime of the circuit 
breakers which lifetime is not longer than 30 years. 
Statistical methods, also the simple ones, can be 
applied to support important maintenance 
decisions, using the data obtained from the failure 
survey. 
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Figure 4: Calculated remaining lifetime for the N2 

leakage in the pressure control switch with Weibull 
distribution 
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Figure 5: Calculated and measured failure 
probabilities for the fault of pump in the air 
compressor with Weibull distribution 
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Figure 6: Calculated and measured failure 
probabilities for the fault of pump in the air 
compressor with Normal distribution  
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Figure 7: Calculated failure rate for the fault of 
pump in the air compressor with Weibull 
distribution 
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Figure 8: Calculated remaining lifetime for the fault 
of pump in the air compressor with Weibull 
distribution 
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Figure 9: Calculated and measured failure 
probabilities for  the SF6 leakage in the circuit 
breaker with Weibull distribution 
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Figure 10: Calculated and measured failure 
probabilities for  the SF6 leakage in the circuit 
breaker with Lognormal distribution  
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Figure 11: Calculated failure rate for the SF6 

leakage in the circuit breaker with Lognormal 
distribution 
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Figure 12: Calculated remaining lifetime for the 
SF6 leakage in the circuit breaker with Lognormal 
distribution  
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Figure 13: Calculated and measured failure 
probabilities for the overheat of primary terminal in 
the circuit breaker with Weibull distribution 
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Figure 14: Calculated and measured failure 
probabilities for the overheat of primary terminal in 
the circuit breaker with Normal distribution  
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Figure 15: Calculated failure rate for the overheat 
of primary terminal in the circuit breaker with 
Normal distribution 
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Figure 16: Calculated remaining lifetime for the 
overheat of primary terminal in the circuit breaker 
with Normal distribution 

Infant mortality does not mean “components that 
fail within 90 days” or any other defined time 
period. Infant mortality is the time over which the 
failure rate of a component is decreasing, and may 
last for years. Electronic components in the 
protection- and control system as well as pressure 
control switch, unlike mechanical assemblies, 
rarely have wear-out mechanisms. Failures during 
infant mortality are highly undesirable and are 
always caused by (1) component doesn’t meet 
requirement; (2) poor design; (3) lack of quality in 
manufacturing; (4) component installed incorrectly; 
(5) component constantly stopping and starting; (6) 
power surges; (7) operator not starting up 
component according to standard operating 
procedure. As infant mortality begins to take effect, 
the prediction of lifetime exists a large derivation as 
shown in Table II and the reliability of circuit 
breaker is becoming less controllable. To truly 
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reduce the likelihood of infant mortality and 
improve reliability, those issues must be addressed 
and prioritized by risk.  

Conversely, wear-out will not always happen long 
after the expected component life. It is a period 
when the failure rate is increasing, and has been 
observed in components after just a few months of 
use. This, of course, is a disaster from a warranty 
standpoint! For many mechanical- and thermal 
defects such as the fault of pump,  the SF6 leakage 
and the overheating of primary terminals, the wear-
out time will be shorter than the desired operational 
life of the whole circuit breaker and replacement of 
failed assemblies can be used to extend the 
operational life of the circuit breaker. With some 
items, wear-out is expected and replacement is a 
normal routine. In designing a circuit breaker, the 
engineer must assure that the shortest-lived 
component lasts long enough to provide a useful 
service life. If the component is easily replaced, 
such as relays, replacement may be expected and 
will not degrade the perception of the circuit 
breaker's reliability. If the component is not easily 
replaced and not expected to fail, failure will cause 
customer dissatisfaction. 

4 CONCLUSION 

In this paper, a statistical approach to investigate 
the reliability of high voltage SF6 circuit breakers 
was developed by use of the multiple censoring 
data. With reference to the equipment’s age, the 
models can describe the intrinsic ageing of the 
circuit breakers by means of the maintenance-free 
data. Furthermore, the goodness-of-fit test and the 
maximum likelihood method were given to select 
the probability distributions and to estimate the 
model parameter subjected to the observation.  
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