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Abstract: The Frequency Response Analysis (FRA) is an advanced method for diagnosis 
of failures in the active part of power transformers. The assessment of FRA results relies 
on the comparison of a reference FRA curve to an actual curve and based on the 
deviations between the two curves and the experience of a human expert, an 
assessment about the integrity of the components of the active part is issued. At the 
present there is a lack of reliable algorithms for automatic assessment of the results. This 
motivated to research new methodologies for overcoming this problem. As a contribution 
to this necessity, this paper summarizes the outcome of a research work in which 
machine learning algorithms were used for automatic assessment of FRA measurements. 
Decision tree classifiers were developed using the algorithm C4.5. The results obtained 
give evidence of the effectiveness of the proposed classifiers. 
 

 
1 INTRODUCTION 

In general, the problem of the assessment of FRA 
measurements can be formulated as the capability 
of a human expert or a computational tool of 
understanding the meaning of the deviations 
between a pair of FRA traces in such a way that 
the deviations can be classified to a specific 
condition of the transformer (e.g. healthy, short-
circuit between turns, mechanical deformation, 
etc.). The typical workflow followed by non-expert 
users when assessing FRA results is next 
described. 
 
First, users perform the assessment of the 
measurements using the assessment algorithms 
implemented in the software of commercially 
available FRA instruments (for example, the 
algorithm of the standard DL/T911-2004). 
However, the assessment provided by the 
standard DL/T911-2004 only provides a general 
diagnosis (severe deformation, obvious 
deformation, slight deformation and normal 
winding), but an explanation about the diagnosis is 
missing and neither information about likely causes 
or recommendations is provided. For this reason, 
in the majority of the cases, the questions of the 
users are not answered by the assessment 
algorithm and the users contact a human expert in 
order to ask for assistance in the interpretation of 
the results. 
 
Machine learning (ML) techniques have been 
widely applied in the field of diagnosis due to their 
classification capabilities. Surprisingly, in the field 
of FRA very few applications of these techniques 
have been found in the literature. Probably, this is 

due to the lack of data required for training the 
algorithms. Among the few attempts to the use of 
ML for assessment of FRA measurements, the 
works [1-2] can be quoted. The work presented in 
[1] illustrates the use of a feed-forward back-
propagation ANN consisting of three layers (input, 
hidden and output) for automatic assessment of 
FRA measurements. Correlation coefficients of the 
plot of the magnitude at three frequency sub-bands 
(LF, MF and HF) and in the whole frequency range 
were used as input to the ANN. The drawbacks of 
this work are: the ANN was trained using only 16 
samples and only 10 samples were used for 
validating it and only two classes were defined 
"deformation", "no deformation". While [2] shows 
the use of self-organizing maps (SOM) for 
classification of failures that could arise after 
subjecting power transformer to the impulse test. 
This test relies on the fact that the neutral current 
obtained at full test voltage should be the same as 
the neutral current obtained at reduced test 
voltage. In order to avoid any dependence of the 
applied voltage, the transfer function was used for 
the analysis of the results. A transformer model 
was used for simulating deformations on different 
sections of the winding for creating the required 
training set for training the SOM. 
 
The main advantage of the use of ML techniques 
is the possibility of establishing interpretation rules 
for the assessment of the results. Actually, taking 
into account that the problem behind the 
assessment task is not more than a classification 
task, it is considered that the problem of the 
interpretation should be addressed with the use of 
ML techniques. Independently on the kind of 
indicator used for analysis of FRA results 
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(statistical, physical parameters, etc.), a classifier 
should be used for allowing the users to 
understand what a change in the value of an 
indicator means. In this sense, it is considered that 
the heuristic should not be totally avoided. All the 
opposite, because of the complexity of the problem 
behind the interpretation of FRA measurements, 
the experience collected world-wide with FRA 
measurements of real case studies of known 
failures should be used. In this manner, a 
combined approach using physical modelling 
together with ML techniques seems to be an 
optimal combination. 
 
This contribution summarizes the outcome of a 
research work done by the authors regarding the 
application of ML algorithms with the aim of 
extracting knowledge rules under which automatic 
assessment of FRA measurement can be carried 
out. In section 2 an introduction to ML is provided 
and in section 3 the methodology used for the 
development of the ML algorithms is described. 
Then, in section 4, the results are presented and in 
section 5 the application of the extracted 
knowledge is illustrated by means of real cases. 
Finally, in section 6 conclusions are provided. 
 

2 MACHINE LEARNING 

Machine learning is a scientific discipline that is 
concerned with the design and development of 
algorithms that allow computers to evolve 
behaviours based on empirical data, such as 
sensor data or databases. A learner can take 
advantage of examples (data) to capture 
automatically characteristics of interest that they 
include. Data can be seen as examples that 
illustrate relations between observed variables. A 
major focus of machine learning research is to 
automatically learn for recognizing complex 
patterns and making intelligent decisions based on 
data. The difficulty lies in the fact that the set of all 
possible inputs is too large to be covered by the 
set of observed examples (training set). Hence, the 
learner must generalize from the given examples, 
so as to be able to produce a useful output in new 
cases.  
 
Machine learning algorithms are frequently called 
classifiers or pattern recognition algorithms. 
Classifiers are not more than a machine learning 
algorithm that syntactically learns simple string 
rules to guide its performance in an arbitrary 
environment. This consists in the assignment of 
some sort of output value (or label) to a given input 
value (or instance), according to some specific 
algorithm.  
 
Another term commonly used in the field of 
machine learning is "data mining (DM)". DM is 
defined as the process of extracting knowledge 
from a database for the creation of a knowledge 

base, which subsequently is used for solving 
problems. In its basic essence, DM is the 
application of ML algorithms to find patterns in 
data. The goal of DM is to find patterns which are 
not predicted by established theory. In other words, 
DM can be defined as an approach of extracting 
full value from data stored in databases [3].  
 
3 METHODOLOGY 

The steps to be followed for the design of a 
classifier using ML algorithms are illustrated in 
Figure 1. The process consists of five steps: data 
preparation, pre-processing, training of a ML 
classifier, analysis of performance and validation. If 
the performance of the classifier against training 
and/or against validation is not satisfactory, it could 
be due to poor data preparation, due to poor 
feature extraction, or just due to the fact that the 
patterns of some classes do not distinguish 
enough from each other. In this late case it is 
recommend re-defining the classification goals. 
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Figure 1: Steps for the development of classifiers 

 

3.1 Experimental data 

A database consisting of FRA measurements 
performed from 2006 till 2011 in more than 500 
power transformers of different designs, sizes and 
different manufactures was used as experimental 
data for the development of algorithms of 
automatic assessment. Figure 2 shows an 
overview of the different types of transformers in 
the database. Additionally, the FRA data of 
winding deformations simulated in real 
transformers was also used. 

As part of the data preparation stage, the FRA 
results of each transformer were analyzed by 
human experts, who assigned to each transformer 
a pre-defined output or diagnosis (healthy, short-
circuit between turns, mechanical deformations, 
etc.). In the field of ML these possible outputs used 
to be called "classes". Particularly, for the research 
work presented in this paper, only the classes 
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presented in Table 1 were used for training the ML 
algorithms. 
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Figure 2: Overview of transformers 

Table 1: Description of the training set 

Description Class N° instances 
Healthy winding under the same 
remanence condition (HESRC) A 38 

Healthy winding under different 
remanence condition (HEDRC) B 75 

Short-circuit between turns (EFST) C 30 
Mechanical deformation (MEDE) E 31 

 

3.2 Pre-processing 

Pre-processing covers three main tasks: noise 
removal, feature extraction and normalization. In 
this section only a brief overview to feature 
extraction is provided. One of the main objectives 
of feature extraction is to transform the input data 
into a set of features, also called indicators. If the 
extracted indicators are correctly chosen, it is 
expected that the indicators will extract the relevant 
information from the input data in order to perform 
the desired task using such reduced 
representation instead of the full size input. 
 
There are different kinds of indicators that can be 
used for condensing information of FRA data. For 
more details about indicators, see reference [4]. 
The authors have research the use of different 
kinds of indicators, but in this paper only the results 
corresponding to the use of correlation coefficients 
(CC) are presented.  
 
Before the calculation of CC coefficients, the FRA 
plots were divided into 5 frequency sub-bands 
(LF1, LF2, MF, HF1 and HF2), as depicted in 
Figure 3, according to the algorithms presented in 
[5]. Then, in each of these frequency sub-bands, 
CC coefficients were calculated for both the 
magnitude and phase plots. As a result, a total of 
10 indicators were extracted. The indicators were 
numbered from 1 till 10, where the indicator 1, 2, 3, 
4 and 5 corresponds to the CC coefficients 
calculated for the plot of the magnitude in the 
frequency sub-bands LF1, LF2, MF, HF1 and HF2, 
respectively. In a similar way, the indicators 6, 7, 8, 

9 and 10 corresponds to the CC coefficients 
calculated for the plot of the phase in the five 
frequency sub-bands. 
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Figure 3: Segregation of FRA plots in sub-bands 

For the selection of the indicators to be used as 
input to the ML algorithm, different statistical 
methods can be used. As example, the use of 
principal components analysis (PCA) is here 
illustrated. From the loading plot of PCA shown in 
Figure 4, clusters of indicators having a high linear 
dependency can be identified. So for example, the 
indicators 2 and 7 provide the same information. 
Thus, only one of these indicators can be used, 
reducing in this way the dimension of the input 
space.  
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Figure 4: Loading plot of PCA 

After reducing the dimension of the input indicators 
by selecting only one indicator per cluster, the 
topology of the classifiers shown in Figure 5 was 
defined. After some trials with different topologies, 
it was decided to use two independent classifiers: 
one for the classification of low frequency failure 
modes and the other one for the classification of 
high frequency failure modes. 
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Figure 5: Topology of the classifiers 

3.3 Training of the ML algorithm 

There are different kinds of ML algorithms that can 
be used. In this paper only the use of decision tree 
(DT) classifiers [7] is presented.  
 
A decision tree is a decision support tool that uses 
a tree-like graph or model of decisions and their 
possible consequences. The family of decision 
trees algorithms are usually called Top-Down 
Induction on Decision Trees (TDIDT). To this 
family belongs algorithms such as CART 
(Classification and Regression Trees), CLS 
(Concept Learning System), ID3 and C4.5, among 
others. 
 
The components of a DT are shown in Figure 6. As 
can be noted, a DT has a root node (RN), 
intermediate nodes, (IN), also called child nodes, 
splitters and leaves. Any IN can be a RN of a sub-
tree. This leads to the recursive definition of a 
decision tree. A leave corresponds to a set of 
instances belonging to a single class. The class of 
the leave is assigned according to the class 
corresponding to the majority of the instances. The 
leaves represent the automatically extracted 
concepts. 
 

RN

IN

Leave

Class j

IN

IN

Leave

Class j

IN

Leave

Class j

Leave

Class j

 

Figure 6: Components of a decision tree 

As illustrated in Figure 7, the training set is 
progressively divided using properly selected 
splitters. The splitters check the fulfilment of 
conditions such as: is that value of the attribute X 
greater/smaller than a threshold? Or is the value of 
the attribute X in the range between A and B? In 
Figure 7 the classification process of a training set 
consisting of elements of four different classes (C1, 
C2, C3 and C4) is illustrated. The training set to be 
classified is divided by the splitter S1 into a leave 
having only elements of the class C1 and a new 
training set (sub-training set), which is a daughter 
set of the initial training set. Afterwards, the splitter 

S2 divides the sub-training set into two leaves (C2 
and C3). As can be noted, in contrast to C1, the 
leaves C2 and C3 are not pure classes because 
some impurities are present. For example, the 
leave corresponding to the class C2 has an 
element of the class C1 and one element of the 
class C4. 
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Figure 7: Split of the training set for obtaining pure 
classes 

For the creation of the decision tree classifiers the 
software Weka was used [6]. The decision tree 
was created using the WEKA algorithm J48 that is 
an approximation to the algorithm C4.5, . After 
running the algorithm, the DT classifiers presented 
in section 4 were obtained. 
 
4 RESULTS 

The DT classifier obtained for the classification of 
low frequency failure modes (classes A, B and C) 
is presented in Figure 8. The tree was pruned 
using a confidence factor of 0.25. The performance 
of the DT against cross-validation using a 
partitioning of 10 folds was very good as 84.45% 
(125 of 148) of the instances were correctly 
classified. Details on the number instances in the 
training set (NITS), number of correctly classified 
instances per class (NCCI) as well as the TP Rate 
and the confusion matrix are presented in Table 2.  
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Figure 8: DT for classification of low frequency 
failure modes 

Table 2: Performance of the low frequency DT 

Class NITS NCCI TP Rate Confusion matrix 
A 38 31 0.816 31  7  0 |  a = A 

10 67  1 |  b = B 
  3  2 27 |  c = C 

B 78 67 0.859 
C 32 27 0.844 
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The DT classifier obtained for the classification of 
high frequency failure modes (classes A and E) is 
presented in Figure 9. The tree was also pruned 
using a confidence factor of 0.25. The performance 
against cross-validation is also good as 81.63% of 
the instances were correctly classified (119 of 
147). Details on the performance are presented in 
Table 3. 
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Figure 9: DT for classification of high frequency 
failure modes 

Table 3: Performance of the high frequency DT 

Class NITS NCCI TP Rate Confusion matrix 
A 113 101 0.894    a   b    

 101  12 |   a = A 
   15  19 |   b = E E 34 19 0.559 

 

5 CASE STUDIES 

In this section the application of the DT classifiers 
presented in section 4 are illustrated by means of 
two cases.  
 
5.1 Case 1 

This case corresponds to a 40 MVA, 138/13.8 kV, 
Ynynd11-connected power transformer. In view 
that an FRA fingerprint was not available, a 
comparison among phases was done, as 
illustrated in Figure 10.  
 
The calculated CC coefficients and the outcome of 
the classification provided by the DT classifiers are 
shown in Table 4. According to these results, the 
transformer has short-circuits between turns (class 
C) with a probability of 1. At the same time, the 
classification provided by the DT in charge of 
assessing high frequency failure modes, that is, 
mechanical deformations, indicates that the 
windings are healthy. In other words, no 
mechanical deformations were diagnosed. The 
diagnosis provided by both DTs was in agreement 
with the real condition of the transformer, as 
reported by the owner of the transformer. 
 
The calculated relative factors and the diagnosis 
provided by the algorithm of the DL/T911-2004 are 
also presented in Table 4. According to this 
algorithm, the transformer has a slight deformation.  
 

 

Figure 10: FRA plots: case 1 

Table 4: Classification: case 1 

CC coefficients 
1 = 0.998; 4=0.998; 5=0.883; 6=0.996; 7=0.278; 8=0.841; 9 
=0.998; 10=0.985 
Relative factors 
RLF=1.69, RMF=2.2, RHF=1.92 
Classification of decision trees 

 Class Probability 
Low Frequency DT C (25) 1.00 
High Frequency DT A (96/4) 0.96 

Assessment according DL/T911-2004 
Slight deformation 
 

5.2 Case 2 

This case corresponds to an 800 kVA, 6.3/0.4 kV, 
Dyn5-connected distribution transformer in which 
an axial deformation was simulated by inserting 
spacers between two discs, as illustrated in Figure 
11. A comparison of the FRA plots before and after 
the deformations are shown in Figure 12. 
 

 

Figure 11: View of the simulated deformation 
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Figure 12: FRA plots: case 1 

The outcome of the diagnosis provided by the DT 
classifiers and by the algotihm of the DL/T911-
2004 are presented in Table 5. The low frequency 
DT classifiers indicates that the transformer is 
healthy, as expected. At the same time, it can be 
appreciated that the high frequency DT 
successfully diagnosed the simulated axial 
deformation. This illustrates the high sensitiveness 
of the classification provided by the DT when 
compared to the algorithm DL/T911 which 
diagnosed the windings as healthy. 

Table 5: Classification: case 2 

CC coefficients 
1 = 0.999; 4=0.999; 5=0.999; 6 = 0.999; 7 =0.999; 8=0.999; 9 
=0.958; 10=0.999 
Relative factors 
RLF=4.93, RMF=3.6, RHF=2.39 
Classification of decision trees 

 Class Probability 
Low Frequency DT A (27/2) 0.92 
High Frequency DT E (4) 1 

Assessment according DL/T911-2004 
Normal winding 
 

These cases illustrate the effectiveness of the 
diagnosis provided by the DT classifiers. The 
classifiers not only indicates that there is a 
problem, but also indicate the specific failure that 
has occurred the in the active part transformer 
(electrical or mechanical). This kind of algorithms 
are without doubt an step forward to the 
enhancement of the reliability of the automatic 
assessment because of their capabilities of 
diagnosing both electrical and mechanical failures 
and due to its enhaced sensitiveness to the 
diagnosis of mechanical deformations (as 
demonstrated by the case 2). An additional benefit 
of these algorithms is that the outcome of the 
diagnosis is provided with a probability that allows 
the user to get a good idea about the reliability of 
the diagnosis. 

6 CONCLUSION 

It can be concluded that the application of ML 
techniques is very promising for solving the biggest 
challenge of the FRA method, namely, reliable 
automatic interpretation of results. It was illustrated 
how from a database of FRA measurements 
together with simulation of deformations in real 
transformers, patterns can be extracted for 
assessing in a more reliable way FRA results. The 
obtained decision trees are quite simple and of 
easy implementation. The benefits of the 
classification using the proposed decision trees 
against the algorithm DL/T911 was illustrated by 
means of two cases. The DT classifiers allow 
diagnosing with high sensitivity not only 
mechanical deformations, but also short-circuit 
between turns. Further research works include: 
expansion of the training set (from real FRA data of 
transformers and from simulation of failures using 
physical models) and development of an expert 
system using as knowledge base the knowledge 
extracted from ML algorithms. 
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