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Abstract : Statistical analysis of failure data is a useful tool for assessing the condition of 
a population of high voltage components such as transformers, joints, bushings and 
cables. More specific, the results of the analysis give valuable insight into the future 
failure behaviour of the population of such components. Prior to the analysis, information 
about the age of the components that are still in operation, as well as time-to-failure data 
of the failed units need to be collected. Then, this information is used as an input for the 
analysis, and the proper statistical distribution model is fitted to the data. Using the model 
with properly fitted parameters a prediction can be made of the future failure rate. For a 
proper analysis, it is important to know how to deal with failures that do not seem to fit 
well the statistical distribution chosen - outliers. These outliers may affect the analysis 
considerably. In our paper we will describe how to deal with this problem in practice. We 
will use common techniques for identification of outliers and analyze the consequences of 
leaving out these outliers from the analysis. A case study is presented based on real 
failure data obtained on a population of high voltage transformers in the Netherlands. 
 

 
1 INTRODUCTION 

Statistical analysis of failure data is often 
considered with respect to the maintenance policy 
of electrical components, i.e. for transformers, 
joints, cables and bushings. In these cases, 
knowledge is necessary about replacement, 
refurbishment or back-up units in a case of failure. 
Taking into account past experiences with failures 
in certain populations of components, statistical 
analysis of lifetime data obtained for particular 
components proves to be a very powerful tool. This 
is true in particular, when information about future 
failures is desired. For a proper statistical analysis, 
the proper data need to be supplied. It means that 
for the particular population that is to be 
investigated, the data ought to fulfil the following 
requirements [1]: 

� Homogeneity – the data have to be drawn 
from a single population, i.e. all potential 
parameters affecting the population must 
be kept constant for the whole time period 
of time. 

� Independency – the data for different 
subjects are independent.  

� Randomness – every outcome (e.g. time-
to-failure) is equally likely to occur within 
the considered population 

� Sufficient amount of data – the amount of 
failure information has to be sufficiently 
large in order to enable drawing 
conclusions 

 

For a series of failure data presenting the 
mentioned features, the analysis can be 
performed. Ultimately, conclusions are drawn with 
respect to the whole population, based on the 
investigated sample of failure data. 

 

Figure 1: Schematic showing how data is 
processed for statistical analysis 

However, during the analysis, some additional 
problems are met. When considering the times-to 
failures of the devices, it may happen that in some 
particular cases, points may not be members of a 
population, because they display either a very low, 
or a very high value with respect to the rest of 
population, and so they are influencing the results 
of the analysis by having a large impact on the 
parameters estimation. Evidently, deleting data 
points without particular reason and evidence 
should be avoided. This is particularly true, when 
dealing with small amounts of failure data. In such 
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a situation, during the analysis, the question arises 
on which factors should it be decided whether 
some points should be retained or rejected from 
the analysis as not belonging to the data-set. 
Based on the example of a population of high 
voltage transformers, the influence of such points 
on the overall analysis and on the results of future 
failure expectation are presented. 

2 FAILURE AND IN-SERVICE DATA 
SUBJECTED TO THE ANALYSIS 

Here, an example is presented of the analysis of a 
population of high voltage transformers belonging 
to Liander is presented. The failure data have been 
taken from the database of the utility, which 
contains entries since 1975. However, for some 
entries the moment of failure is either not exact or 
not known. Thus, for the population of transformers 
in total 52 failures are analyzed. The exact 
information, with respect to the number of failures 
and accompanying ages at the moment of failure is 
presented in Figure 2. 

 

Figure 2: Number of failures registered for 
transformers of a particular voltage level. 

The considered population of transformers can be 
divided into two main groups according to the 
voltage ratings, namely: 

� Group I – Transformers of 150/50/10, 
150/50, 150/20, 150/10  110/20 and 
110/10kV 

� Group II – Transformers of 50/10 and 50/6 
kV 

From Figure 2, it follows that the number of failures 
occurring for transformers of 150 kV and 110 kV is 
limited. For that reason, the failures for those 
transformers are taken together for the needs of 
statistical analysis. The failures can have different 
failure modes, such as failures of tap-changers, 
short-circuit in winding or in bushing or leakage of 
oil from main tank. However, here a further 
distinction will not be made. Considering the in-
service population of transformers operated by the 
utility, the number of transformers installed in 

particular years with distinction to rated voltage can 
be seen in Figure 3. 

 

Figure 3: Number of installed transformers in 
particular years, discerned according to the 
voltage level, being operated by utility. 

In total, the in-service population consists of 
around 500 transformers. The age span of the 
population is from 3 to 60 years. The average age 
of the transformers is 32 years. From Figure 3 it 
can be noticed that the majority of the transformers 
was installed before 1980’s. The rated power of 
the transformers is between 10 and 175 MVA. 

3 STATISTICAL ANALYSIS OF FAILURE 
DATA 

For the statistical analysis, the failure and in-
service data is taken into account. For the failed 
transformers, times-to-failure are considered, and 
for in-service transformers the actual ages. 
Regarding the status of the transformer after failure 
occurrence, a remark has to be made here. 
Namely, in some cases, the transformer can be 
either lost after failure occurrence. In other cases, 
it can be repaired and brought to service after long 
reparation, if damages are not severe. For the 
needs of analysis, although such information was 
available, no distinction has been made. This is 
due to small amount of failure data for population 
under consideration. Thus, all failure information 
was treated as regarding failures leading to failure. 
This assumption implies, that the failure 
expectation as an outcome of the analysis will be 
related to the failures leading to the loss of 
transformer. However, even repairable major 
failures cause unavailability of the transformer for a 
long time. The immediate replacement of failed unit 
is necessary. In this way, it can be seen that this 
assumption has no significant influence on the 
result of analysis. 

3.1 The whole population of transformers 

In order to get the overall picture of the failure 
occurrence, the whole population is investigated. 
This is done by using information from Figure 2 
and Figure 3. The data of the population can be 
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fitted with a 2-parameter Weibull distribution. The 
parameters are: β=2.39 and η=94. The cumulative 
density function with 90% confidence bounds can 
be seen in Figure 4. 
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Figure 4: CDF of 2-parameter Weibull distribution 
with 90% confidence bounds obtained for the 
whole population of transformers. 

From Figure 4 it follows that the first four points 
(failures occurring at the ages of 5, 8, 9, 12 years) 
ale not located well on the CDF line, and they are 
suspected as being outliers. Here a simple method 
will be presented in order to see if these points can 
be truly regarded as outliers [2]. The first step is to 
obtain the shape parameter (β), the scale 

parameter (η) and the mean life (
−
T ) for the failed 

population. Only failure data has to be considered 
and all suspensions are to be neglected. The 
values of the parameters for the population are as 

follows: β=2.65, η=34 years and 
−
T =30 years. 

Secondly, the standard deviation of the population 
has to be computed with (1) 
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Where Г is the gamma function, the value of which 
can be computed for particular arguments with 
available software packages. Substituting the 

obtained values into (1) a value of Tσ =12.72 is 
obtained. Finally, the approximate values of lower 
(2) and upper (3) limits for the failed population are 
obtained, for which the respective lower or higher 
times-to-failure may be considered outliers. 

Tlower kTt σ−=   (2) 

Tupper kTt σ+=  (3) 

Where: tlower and tupper are lower and upper limits 
respectively, and k is a factor which value depends 
on the confidence level (CL) of the points to be 
considered as outliers. If CL=99% then k=2.3264 

          CL=95%          k=1.645 
          CL=90%          k=0.1282 

Recalculating, it is found that the failures occurring 
at 5, 8 and 9 years can be rejected with a 
confidence level of 95%. Also the failure occurring 
at the age of 12 years can be rejected with a 
confidence level slightly lower than 95%.  
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Figure 5: CDF of 3-parameter Weibull distribution 
with 90% confidence bounds. 

Failure Rate vs Time Plot
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Figure 6:  Failure rate versus time function of 3-
parameter Weibull distribution with 90% confidence 
bounds. 

Removing the data points mentioned from the 
considered population, as they are considered to 
be outliers will result in the creation of a new 
distribution with the parameters of β=1.73, η=77 
years and γ=16 year  The details can be seen in 
Figure 5 and in Figure 6. The introduction of the 
third parameter can be explained by the fact that in 
the new distribution there are no failures at an age 
lower than 18 years. However, a remark has to be 
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made here. As can be seen from (2) and (3), in the 
method used here the scatter of the data is taken 
into account. In other words, it is observed how far 
the mentioned point differs from the mean value, 
for the given confidence level. Beside mentioned 
calculations, it is also good to check the location of 
the point on the probability net and their correlation 
to the CDF line. This can be observed for the 
failure occurring at the age of 55 years, as it should 
be rejected as outlier with 95% confidence level. 
However, it can be seen that it fits very well the 
new distribution chosen where the first four failures 
are removed. 

3.2 Transformers belonging to group I 

Here, the failures occurring of group I are 
analyzed. In total, 16 failures are considered for 
this group of transformers. Using the in-service and 
failure data, as presented in Figure 2 and Figure 3, 
a 2-parameter Weibull distribution is fitted to the 
data. The parameters of the distribution are β=3.2 
and η=71.15 years. The accompanying 90% 
confidence bounds are presented in Figure 7. 
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Figure 7: CDF of 2-parameter Weibull distribution 
with 90% confidence bounds obtained for the 
group I of transformers. 

When taking a closer look at the CDF function, it 
can be seen that first point is not well located on 
the CDF function and is strongly influencing the 
distribution. Thus it might be considered as being 
outlier. Here, another method of identifying outliers, 
so called Natrella-Dixon test will be presented [3]. 
The advantage of this method, is that neither mean 
life nor standard deviation has to be known. After 
the data has been collected, the first step is to 
arrange all times-to-failure in ascending order, as 
given by (4) 

T1 < T2 < T3 < … < TN-1 < TN       (4) 
 
Where: N is the sample size, number of units 
failed, including suspected outliers. For the given 

sample size N, a critical value rij has to be 
computed, if: 

3 ≤ N ≤ 7     compute r10            (5) 
8 ≤ N ≤ 10   compute r11            (6) 
11 ≤ N ≤ 13   compute r21         (7) 
14 ≤ N ≤ 25   compute r22         (8) 

Where rij is calculated according to the sample size 
and given by the respective formula, as presented 
in Table I. 
 

Table 1: Computation of rij with respect to the 
sample size and location of the suspected point. 

rij If TN is suspect If T1 is suspect 
r10 (TN – TN-1)/(TN-T1) (T2 - T1)/(TN-T1) 
r11 (TN - TN-1)/(TN-T2) (T2 - T1)/(TN-1-T1) 
r21 (TN - TN-2)/(TN-T2) (T3 - T1)/(TN-1-T1) 
r22 (TN - TN-2)/(TN-T3) (T3 - T1)/(TN-2-T1) 

 

For the group I of transformers (150 kV and 110 
kV) sixteen failures are analysed. By arrangement 
in ascending order, the following population with 
times-to-failure in years is obtained: T1..TN={9, 23, 
27, 27, 29, 30, 30, 30, 30, 34, 34, 34, 35, 36, 37, 
43}. The sample size N=16, then, as indicated by 
(8), r22 has to be calculated with the formula given 
in Table 1, where the first data point in the 
population is suspected to be an outlier. 
Substituting particular values into the formula, a 
value of r22=0.667 is obtained. 

Table 2:  Criteria for rejecting suspected 
observations using the Natrella-Dixon test 

Critical values at the probability levels of α/2 
 N 

0.30 0.20 0.10 0.05 0.02 0.01 0.005 

3 0.684 0.781 0.886 0.941 0.976 0.988 0.994 
4 0.471 0.560 0.679 0.765 0.846 0.889 0.926 
5 0.373 0.451 0.557 0.642 0.729 0.780 0.821 
6 0.318 0.386 0.482 0.560 0.644 0.689 0.740 

r10 

7 0.281 0.344 0.434 0.507 0.586 0.637 0.680 
8 0.318 0.385 0.479 0.554 0.631 0.683 0.725 
9 0.288 0.352 0.441 0.512 0.587 0.635 0.377 r11 

10 0.265 0.325 0.409 0.477 0.551 0.597 0.639 
11 0.391 0.442 0.517 0.576 0.638 0.679 0.713 
12 0.370 0.419 0.490 0.546 0.605 0.642 0.675 r21 
13 0.351 0.399 0.467 0.521 0.578 0.615 0.649 
14 0.370 0.421 0.492 0.547 0.602 0.641 0.674 
15 0.353 0.402 0.472 0.525 0.579 0.616 0.647 
16 0.338 0.386 0.454 0.507 0.559 0.595 0.624 
17 0.325 0.373 0.438 0.490 0.542 0.577 0.605 
18 0.314 0.361 0.424 0.475 0.527 0.561 0.589 
19 0.304 0.350 0.412 0.462 0.514 0.547 0.575 
20 0.295 0.340 0.401 0.450 0.502 0.535 0.562 
21 0.287 0.331 0.391 0.440 0.491 0.524 0.551 
22 0.280 0.323 0.382 0.430 0.481 0.514 0.541 
23 0.274 0.316 0.374 0.421 0.472 0.505 0.532 
24 0.268 0.310 0.367 0.413 0.464 0.497 0.524 

r22 

25 0.262 0.304 0.360 0.406 0.457 0.487 0.516 
 

Here, similar to the previous case, it is investigated 
whether a given point is an outlier with a given 
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confidence level (CL). Firstly, CL=99% is 
investigated. If: 

CL=99%=0.99=1-α/2 (9) 

 Then α/2=0.01. 

For the given values of N and α/2, the value of rα/2 

has to be found from Table2, in this case  

rα/2=0.595 

The final step is to compare the obtained value of 
rij with rα/2. If rij> rα/2 then the suspected point can be 
rejected from the analysis with the given CL. Here:  

r22= 0.667> r0.01= 0.595. 

Thus, it can be stated that the failure that occurred 
at the age of 9 years can be rejected from the 
analysis, as being outliers with the CL of 99% in 
the given data-set. Rejecting the suspected point 
from the analysis will result in obtaining a new 3-
parameter Weibull distribution. The parameters of 
the distribution are β=1.74, η=57 years and γ=20 
years. The introduction of the third parameter can 
be explained by the fact that the earliest failure 
considered in the dataset occurred at the age of 23 
years. 
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Figure 8: CDF of 3-parameter Weibull distribution 
with accompanying 90% confidence bounds. 

In Figure 8, the cumulative density function of 3-
parameter Weibull distribution is presented for the 
population from which the point suspected to be 
outlier has been removed. In Figure 9, time 
dependent failure rate function has been 
presented, for the same population. 
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Figure 9: Failure rate versus time function, with 
accompanying 90% confidence bounds. 

A remark has to be made regarding this method. In 
the presented case, there was only one point 
suspected, located at the beginning of the 
population. Thus, in (9) CL=1-α/2. If it turned out 
that there are two points suspected as being 
outliers, located in the beginning and in the end of 
population each, then the value of rα/2 corresponds 
to the CL=(1- α) instead of (1- α/2). 

3.3 Summary 

Based on real transformer failure data from the last 
35 years, an example was presented of the 
analysis and investigation into the presence of 
outliers in the data-sets. Firstly the whole 
population was investigated and some points were 
found which can be called outliers with a given CL. 
For that purpose an approximate method has been 
presented for the outliers’ identification. Secondly, 
a subsection of the transformers was investigated 
against the outliers and the Natrella-Dixon test was 
presented as an alternative method for the outliers’ 
identification in the given data-set. In Table 3, an 
influence of retaining or rejection suspected points 
from the analysis is presented for the particular 
populations of transformers 

Table 3:  Values of B-life and mean-life for two 
populations, in each case influence of outliers on 
the analysis is presented. 

  
Total population 

[years] 
Group I - transformers 

[Years] 

Outliers Included Rejected Included Rejected 
B1 life 14 (11-17) 21 (20-23) 17 (13-23) 24 (22-27) 

B10 life 36 (33-40) 36 (34-40) 35 (31-40) 35 (32-39) 
Mean life  83 (69-99) 84 (71-100) 63 (53-77) 59 (51-68) 

 
From Table 3, it follows that rejection of the outliers 
from the data-sets affected mainly the B1-life, as 
the removed outliers were in the beginning of the 
data-set and their removing resulted in changing 
the distribution. Values of B10 life and mean-life 
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were not significantly changed by the outliers’ 
rejection. 
 

4 INFLUENCE OF OUTLIERS ON THE 
FAILURE PREDICTION 

Two real failure populations of transformers were 
investigated for the presence of possible outliers. 
For each population, a time dependent failure rate 
function was obtained. By using the function as 
well as information about the in-service population, 
it is possible to estimate the number of expected 
failures in the coming future. The results are 
presented in Figure 10 and Figure 11. For each 
population a prediction is made and the 
accompanying 90% confidence bounds are 
presented. Additionally, the influence of the 
rejection of outliers from the analysis on the failure 
prediction as well as on the confidence bounds is 
presented. 
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Figure 10: Failure expectation as calculated for the 
whole population, presented with 90% confidence 
bounds. Influence of outliers is pointed out. 
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Figure 11: Failure expectation as calculated for group 
I, presented with 90% confidence bounds. Influence of 
outliers is pointed out. 

From Figure 8 and Figure 9 it follows that outliers 
in the data-sets may have an influence on the 
number of expected failures in the future, as well 
as on the accompanying confidence bounds. In 
particular, for the group I of transformers, rejection 
of suspected outliers resulted in an increase of the 
number of expected failures in 2011 from around 
1.4 to 2. In that case, also the 90% confidence 
bounds became wider. 

5 CONCLUSIONS 

From the statistical analysis of 110 kV and 150 kV 
transformer failure data obtained from a utility, the 
following is concluded: 

o The failure expectation for the future can 
be estimated even with limited failure data. 
However, it might happen that due to the 
incomplete failure information, some points 
suspected to be outliers may be found.  

o It is possible to prove with a certain 
confidence level that those suspected 
points are outliers. 

o The presence of the suspected outliers 
may have a significant influence on the 
number of expected failures and 
accompanying confidence bounds, as well 
as on the particular values of B-lives. 

o Considering differences in sizes of the 
whole population and group I of the 
transformers, it can be seen that the 
rejection of the outlier has stronger 
influence on the result of analysis for 
smaller population. 
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