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Abstract: Partial Discharge (PD) is inherently a non-Markovian process exhibiting 
significant statistical variability in the correlated patterns that describe the nature of 
discharges. Hence, the utility of Hidden Markov Model (HMM) as a tool to recognize 
spatio-temporal sequences of dynamically varying patterns becomes perceptible. Though 
a few researchers have attempted PD pattern recognition utilizing the standard version of 
HMM, such studies are confined to stationary Discrete Density HMM (DDHMM) versions 
which reported a relatively lower success rate. Since PD patterns exhibit dynamic 
behaviour, a non-stationary Continuous Density HMM (CDHMM) which best describes 
the hidden state transition probabilities as time dependant estimates coupled with 
multivariate Gaussian observation densities is taken up for study. This research focuses 
on implementing a novel hybrid HMM-Probabilistic Neural Network (HMMPNN) PD 
pattern recognition system which utilizes the complementary advantages of both the 
models i.e., ability of HMM in recognizing spatio-temporal sequences and capability of NN 
in classifying patterns. Exhaustive studies and analysis is carried out on laboratory 
models and industrial objects to determine the effectiveness of classification of the 
proposed hybrid system to cater to large training dataset. Comparison of performance of 
the algorithms with various pre-processing schemes that utilize statistical operators has 
also been carried out.  

 
1 INTRODUCTION 

Though there have been rapid advances in design, 
manufacture, quality control etc of power 
apparatus, instances of failure of equipment due to 
insulation are still being reported since minor flaws 
such as blow-holes, voids, surface imperfections 
etc are practically inevitable leading to partial 
discharges (PD). PD phenomenon which 
incidentally serves also as a non-destructive 
technique is an electrical breakdown which is 
essentially confined to the localized region of 
dielectric system of a power apparatus. Since 
identification and classification of the source of PD 
is fundamental to diagnosis, recently the focus of 
researchers has shifted to recognition of defects 
due to multiple sources of PD. Recent research 
indicates that recognition of multiple source PD 
patterns is yet a challenging facet though 
techniques such as Mixed Weibull functions, 
Neural Networks (NN) [1], Wavelet Transformation, 
Hidden Markov Models (HMM) [2-3], etc have 
reported significant success for single source PD 
only. Moreover, since modern digital PD 
acquisition systems record data for a stipulated 
duration, the database is substantially large 
leading to difficulties in clustering and categorizing 
PD sources.  
 
Incidentally, a few researchers [3-4] have 
attempted HMM for PD pattern recognition which 
was confined to investigations based on stationary 
discrete density HMM (DDHMM) versions and 

reported a moderate degree of recognition 
capability. Since PD is inherently a non-Markovian 
and a complex stochastic process wherein the 
pulse patterns that describe the major attributes of 
the discharge mechanism has significant statistical 
variability, a non-stationary continuous density 
HMM (CDHMM) [4] which best describes the 
hidden state transition probabilities as time 
dependant estimates coupled with multivariate 
Gaussian observation densities is proposed as a 
model that describes the dynamics in PD patterns. 
In addition, since several researchers in various 
allied fields have also reported on the limitations of 
HMM in discriminating patterns [5], a novel hybrid 
HMM-Probabilistic Neural Network (HMMPNN) PD 
pattern recognition system which utilizes the 
complementary advantages of both the models is 
implemented. Detailed studies are carried out to 
ascertain the efficacy of classification of the 
proposed hybrid system in catering to large multiple 
source PD training dataset. Comparison of the 
performance of the algorithm with various 
preprocessing schemes that utilize statistical 
operators has also been studied.  

2 DEVELOPMENT OF HYBRID CDHMM-PNN 
FOR PD PATTERN RECOGNITION 

2.1 Non-stationary CDMM for Dynamic 
PD Pattern Recognition 

A HMM is defined as a doubly stochastic process, 
comprising an underlying stochastic process that is 
not directly observable, but can only be visualized 
through another set of stochastic processes that 
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produce a sequence of observations. Since the 
state of the model at an instant is not directly 
observable, the model takes the name ‘Hidden 
Markov Model’. Specific details are provided in the 
following sections. HMMs can be classified based 
on their topology into two major categories as 
either an ergodic HMM (fully connected HMM) or 
as a non-ergodic HMM (left-to-right HMM). Since 
the left-right model is characterized by an increase 
in the state index for increasing time, it inherently 
attempts to map the spatio-temporal behaviour of 
the time varying (for varying applied voltages) PD 
patterns and hence has been considered in this 
research work.  

HMMs are also classified based on the procedure 
of obtaining the density estimates of the 
observations as discrete and continuous density 
HMMs. A HMM comprises ‘N’ states wherein some 
form of physical significance may be attributed to 
them. In a Markov process, a new state is given by 

{ }Nst ,...,2,1∈  in steps of t= 1, 2 … T. The initial 
state distribution matrix is labelled ‘π’ 
wherein { } ( )isPrii ===∏ 1,ππ .  Computation 
of the state transition probability matrix ‘A’ involves 
calculation of { } ( )isjsPaijaijA ttr ==== + |, 1  
for i=1,2,…,N. The resulting state sequence is 
denoted by { }TtsS t ,...2,1, ==  and the 
probability obtained is given 

by ( )
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or output vector is described by a sequence 
{ }ToooO ,...,, 21=  where M

to ℜ∈ with M 
dimension for the ‘O’ observation sequences. The 
output vector is produced according to the 
probability distribution called the observation 
probability distribution ‘B’ given by ( ){ }tj obB =  

where ( ) ( )jskoPob titj === | . A model of this 
sort is called the DDHMM. If the emission 
probability distributions are described as Gaussian 
mixture model with a conditional mean vector μj 
and a covariance matrix Vj obtained for density 
related to ‘jth’ state the density is described as N(μj, 
Vj). This model is called the continuous density 
HMM (CDHMM). The parameters that specify the 
CDHMM are A, π, B. 

CDHMM, models the transition probabilities as one 
in which from t to t+1, the transition is dependent 
on the state‘t’ only. Though this may provide 
classification/ recognition capability, the dynamic 
behaviour of the PD patterns may not always 
provide satisfactory results. Hence, to enhance the 
dynamic behaviour of the model a non-stationary 
component is added into the model which aims at 
capturing the time-dependence in the state 
transition probabilities. The state transition matrix 
is now generated to have T-1 number of matrices 

and is modified to At where t =1,2,…,T-1. Another 
major aspect of implementation of the non-
stationary (dynamic) CDHMM is in ascertaining the 
number of hidden states. In the case of PD pattern 
recognition the number of states are obtained from 
the relative durations of the zones where PD 
pulses are discerned and where the ‘background’ 
(no PD) zones are observed [2]. It is obvious from 
such correlations that the number of states for 
appropriate PD pattern classification is 5 in most 
studies [3]. The training phase of the dynamic 
HMM involves obtaining the state optimized 
likelihood function (using the maximum likelihood 
algorithm) pertaining to the parameters A, Π, B 
related to a class of PD source. Maximization of 
the state optimized likelihood for each training 
sequence of a set of observations is obtained by 
utilizing the Viterbi algorithm. At the completion of 
the training stage, the basic dynamic patterns 
pertaining to the source of PD is deemed to have 
been learnt. 

2.2 PNN as a Post- Processor for 
Hybrid CDHMM in Classifying PD Patterns  

The a-posteriori probabilities obtained as optimized 
state estimates of the CDHMM algorithm forms the 
weight vector for further training by the neural 
network. Since Probabilistic Neural Network (PNN) 
has its inherent strength of utilizing a probabilistic 
framework in addition to implementing a Bayesian 
strategy during decision making (obtaining the 
class conditional probability) process, the PNN 
augurs well for the classification task.  

PNN [6] is a formulation based on the concept of a 
non-parametric estimator for obtaining multivariate 
probability density estimates. It is a model based 
on competitive learning with a ‘winner takes all 
attitude’. The fundamental version does not 
comprise any feedback path. PNN is essentially a 
classifier, which combines the Bayesian strategy 
for decision-making as a part of the decision layer 
of the NN along with utilizing a non-parametric 
estimator (Parzen window) for obtaining estimates 
of conditional probabilities. This basic version of 
PNN uses all the training samples as centers ‘c’ or 
mean vectors of the Gaussian function with only 
the trainable part of the NN namely the mixing 
coefficients (β) and a common variance (σ) or 
smoothing parameter to be estimated. PNN is a 
four layer neural network. It comprises an input 
layer, two hidden layers (exemplar/ pattern layer 
and class/ summation layer) and one decision 
layer.  

Further, since studies by several researchers in 
allied fields and by the authors of this research [7] 
have clearly demonstrated the classification 
capability of PNN and more so in condition 
monitoring applications, this network paradigm has 
been taken up for study in this research. As 
hindsight, though the standard version of PNN may 
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result in a huge number of hidden nodes during 
training, since the optimal state estimates that form 
a part of the CDHMM trained output now becomes 
the training dataset, frugal sets of feature vectors 
are obtained. 

3 PD TEST SETUP AND LABORATORY 
MODELS FOR PATTERN CLASSIFICATION 

3.1 Generic Arrangement of PD 
Measurement and Acquisition System  

Investigations have been carried out using a 
10kVA, 100kV, 50Hz test transformer with 
associated accessories and a W.S Test Systems 
make Digital PD Measurement System Model No.: 
DTM-D®) with a measurement range of 2-5000pC. 
A built-in oscilloscope (TDS 2002B) alongside a 
tunable adjustable filter-insert (Model: DFT-1) with 
a  center frequency variable from 600 kHz- 2400 
kHz at a bandwidth of 9 kHz is utilized for acquiring 
PD pulses. The direct detection and measurement 
test setup as recommended in IEC has been 
utilized in carrying out all the tests in this research 
since the tests have been carried out in a 
controlled laboratory environment thus obviating 
the need for alternative strategies for noise 
suppression. Notwithstanding, the PD 
measurement comprises window gating facility to 
mask and suppress unwanted background noise 
during measurement. The arrangement of the test 
circuit is carried out so as to comply with the 
stipulations laid down in IEC 60 270 with regard to 
the various requirements of the test procedure. In 
order to improve the transfer characteristics of the 
test circuit a 1nF coupling capacitor is also 
included in the test setup. Calibration of the test 
setup is carried out using a reference calibrator 
(Model: PDG

®
) and in line with the requirements of 

IEC 60 270. Fig. 1 and Fig. 2 show a typical 
generic arrangement of the laboratory test setup 
for PD pattern recognition studies and the PD 
measurement and acquisition system used in this 
research.  

 

Figure 1: Generic Arrangement of PD 
Measurement and Acquisition System  

  

Figure 2: Typical Layout of Laboratory 
Setup and Digital PD Measurement and 
Acquisition System 

PD Gold® acquisition
 
software is interfaced with the 

PD detection system for acquiring the PD patterns. 
The unit also detects PD for 50Hz power cycle 
which allows the user to observe the shape of the 
PD pulses detected in addition to acquiring the 
phase resolved PD (PRPD) patterns in real-time. 
The pulses are displayed in both sinusoidal and 
elliptical forms selectable in auto or manual mode.  

3.2 PD Experimental Studies and 
Laboratory Models  

In order to ascertain the recognition (identification) 
and classification (discrimination) capability of the 
proposed model two exhaustive case studies have 
been taken up for studies. The first study 
comprises complex multiple source PD patterns 
wherein three models pertain to single source 
discharge patterns i.e., electrode bounded cavity 
(EC), air corona (C) and oil corona (OC) while the 
fourth model involves another major form of 
complex multiple source PD (overlapped patterns) 
namely the electrode bounded cavity with air 
corona (ECC). The second comprises a study 
pertaining to dynamically varying pattern due to 
surface tracking initiated dry band formation in 
ceramic disc insulators which serves as a 
precursor to pollution initiated flashover.  

3.2.1 Case Study 1: Laboratory Models simulating 
Multiple Source PD Patterns   Laboratory models 
have been fabricated to replicate PD patterns that 
are representative of the source of discharge 
displayed in the oscilloscope in line with the 
recommendations of [8]. A 12mm thick, 20 mm 
diameter perspex with electrode-bounded cavity of 
2 mm depth simulates internal PD.  Electrode 
bounded cavity with air-corona is produced by 
inserting a needle configuration of 2 mm diameter 
from the HV electrode in addition to a 2 mm 
electrode-bounded cavity on perspex in the high 
voltage electrode. These are shown in Figure. 3.  
Corona discharges in air and oil are replicated with 
a point electrode initiated from a stainless steel rod 
with an approximate angle of 85° and a plane 
electrode of 10mm thick, 60mm diameter as shown 
in Fig. 4. 
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Figure 3: Laboratory models simulating 
Electrode bounded cavity and multiple source 
discharges 

 

 

 

Figure 4: Laboratory models simulating Air 
and Oil Corona discharges  

PD database comprises hundred patterns of each 
type of the defect for various applied voltages. It is 
to be noted that these patterns exhibit the 
statistical variations in the pulse patterns for each 
cycle of the sinusoidal voltage indicating the 
inherent non–Markovian nature of PD thus making 
obvious the difficulty encountered during 
classification. The task becomes even more 
demanding due to varying applied voltages. Table 
1 shows the patterns acquired for large dataset 
from various sources of PD.  

Table 1: Database for multiple source PD patterns 
for varying applied voltages 

Class Label 
of PD for 
Identification  

Type of 
PD  

Applied 
Voltage 
(kV) 

Total 
Patterns  

EC 
Electrode 
Bounded 
Cavity  

7.28  
120 9.1 

9.6 

C 
Air-Corona  13.65  

120 20.93 
22.75 

OC 
Oil-Corona 20.93  

120 29.12 
31.85 

ECC 

Electrode 
Bounded 
Cavity with 
Air-Corona 

9.1  
120 9.6 

13.6 

 

3.2.2 Case Study 2: PD Pattern Approach for 
Pollution Severity Initiated Flashover in Ceramic 
Insulators Since contamination flashover has 
become a vital aspect in the design of high-voltage 
outdoor insulation, this research envisages studies 
pertaining to severity associated flashover 
prediction in ceramic insulators using partial 
discharge patterns as a tool for diagnosis. Since 
this research focuses on conducting predictive 
tests to determine the performance of polluted 
insulator due to dynamic changes in the PD 
pattern due to varying salinity, an artificial pollution 

test is conducted with equivalent salt as the 
pollutant to analyze the performance of the 
insulators. Since the clean fog test reflects the 
contamination mechanism occurring in industrial 
locations, the test is carried out by is dipping the 
insulator into slurry consisting of 40g of kaolin with 
varying levels of salinity (39 gm/l, 57 gm/l, 67 gm/l 
and 91 gm/l). It is observed during studies that 
except for the clean and dry case of leakage 
current waveforms the remaining cases are similar 
in spite of the varying polluting conditions. On the 
contrary, in the case of PD patterns, it is revealed 
that there exist significant differences between 
phenomena that do or do not affect insulator 
flashover performance and arcing due to polluted 
surfaces. It is observed that PD on polluted 
surfaces clearly exhibits a large distribution and 
scattered number of PD pulses as compared to dry 
and wetted insulator before the initiation of 
scintillation led flashover. Due to the afore-
mentioned reasons, PD pulses are analyzed to 
assess the pollution initiated flash over in 
insulators. A series of experiments are performed 
on four different porcelain insulator samples of 
varying dimensions to assess the performance of 
pollution severity initiated flashover due to power 
frequency voltages.  Measurement of correlated 
PD and leakage current were studied for the 
following cases: 1. pin of the ceramic insulator, 2. 
cap of the ceramic insulator and 3. both pin and 
cap of ceramic insulator. Table 2 indicates study 
carried out for the samples.  

Table 2: Database of PD patterns during to 
pollution performance studies in ceramic insulators 

Category 
of PD 

Type of PD Applied 
Voltage 
(kV) 

No.  of 
Patterns  

 
1 

PD (wetted without 
Dry band arcing)  

6.1  
40 

  
2 

PD during Dry band 
(at pin end)  

2.8  
40 3.6 

3 PD during Dry band 
(at cap end) 

6.4  
80 10.7 

4 PD during Dry band 
(at pin and cap) 

12.4  
40 16.3 

 

3.3 Feature Extraction and pre-
processing of PD Patterns 

The raw data obtained from the PD measurement 
and acquisition system is in the form of φ-q-n 
characteristics which describes the PD source 
pattern. Though several researchers have utilized 
either the phase resolved or the time resolved 
representation of PD patterns for diagnosis of 
insulation, this research resorts to the former 
approach since it augurs well for pattern 
recognition. This aspect has also been reiterated 
by several researchers carrying out studies 
pertaining to pattern recognition since it has been 
inferred that each discharge pulse reflects the 
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physical process at the discharge site and a strong 
relationship has been substantiated between the 
type of patterns and the type of defect.  

The role of pre-processing is to ensure 
compactness of the input without compromising 
the loss of unique features. In this research the 
data describing the source of PD is characterized 
based on phase window technique into three 
categories: 1. measures based on maximum/ 
minimum values of apparent charge and number of 
discharge pulses, 2. measures based on types of 
mean measures and 3. measures based on mean-
slope-angle. The objective of using various 
methods of pre-processing is to ascertain the 
performance of the proposed hybrid system in 
recognizing and classifying the patterns so that 
tangible decisions may be taken on the role played 
by the various key parameters of the HMM-PNN 
such as smoothing parameter, influence of curse of 
dimensionality, change of state sequence that 
represents the dynamic behaviour of the patterns 
etc.  

4 OBSERVATIONS AND ANALYSIS 

4.1 Classification Capability of Hybrid 
CDHMM –PNN 

It is evident from the tests as stated in 3.2.1 and as 
mentioned in Table 1 that for all the types of pre-
processing and feature extraction techniques taken 
up for study, the hybrid classifier resulted in 
excellent classification rate. Table 3 and Table 4 
show the performance of the hybrid HMM-PNN in 
discriminating the multiple source PD patterns and 
dynamically varying patterns pertaining to pollution 
led flashovers in insulator samples. 

Table 3: Performance of Hybrid CDHMM-PNN for 
Multiple Source PD Laboratory Models 

Feature 
Extraction 
Scheme 

Phase 
Window  

No. of 
Tuples 

Training 
Patterns 

Classification  
(%) 

Measures 
based on 
Maximum 
Value 

Φ-qmax-n 
(10º) 

36 108 96 

Measures 
based on 
Minimum 
Value 

Φ-qmin-n 
(10º) 

36 108 94.2 

Measures 
based on 
Types of 
Mean  

AM-GM-
HM-RM  
(10º) 

36 108 96.2 

Measures 
based on 
Mean-
Slope-
Angle 

Mean- 
Slope- 
Angle 
 (10º)  

36 108 97.44 

 

It is also observed that the measures based on 
mean-slope-angle had better classification rate as 

compared to the other statistical measures. It is 
also pertinent to note that only the simple statistical 
operators have been utilized as a pre-processing 
method in this research while more advanced 
measures based on cross-correlation, auto-
correlation, statistical moments etc could provide 
enhanced classification rate. 

Table 4: Performance of hybrid CDHMM-PNN for 
pollution performance studies in ceramic insulators 

Feature 
Extraction 
Scheme 

Phase  
Window  

No. of 
Tuples 

Training 
Patterns 

Classification 
(%) 

Measures 
based on 
Maximum 
Value 

Φ-qmax-n  
(10º) 

36 360 91.67 

Measures 
based on 
Mean-
Slope-
Angle 

Mean- 
slope- 
angle  
(10º)  

36 360 94.4 

 

4.2 Dynamic Nature of Patterns during 
the training phase and its relevance 

Though it has been clarified by researchers 
utilizing HMM that the state transition 
representation of the pattern do not directly provide 
inferences pertaining to the change in the physical 
phenomena of the system under study, yet it is 
worth mentioning that the changes in the state 
labels (state transition) reflect the change in the 
dynamics of the system in turn relating to the 
plausible change in the physics governing the 
nature of such dynamics. This aspect is evident in 
both the studies. Table 5 shows this aspect. 

Table 5: Optimized State Transition Labels  

 

It is perceptible from Table 5 that the nature of PD 
patterns though vary considerably during the dry-
band formation, are rapidly transformed to closely 
resemble patterns that is prior to the advent of 
such scintillation led discharges. Such subtle 
changes in states are perceived in such discharges 
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in the non-stationary CDHMM scheme. However, 
since the changes in the multiple source PD 
pattern studies are conducted for observing the 
changes in the patterns pertaining to one type of 
defect rather than a source of PD that transitions 
from one type to another, it is evident that the state 
transitions are distinctly different.  

4.3 Dimensionality reduction due 
optimal state and impact on classification 
capability 

Since the optimal states have been obtained for a 
phase window of 10º a total of 36 tuple vectors are 
obtained as the optimal state density estimates 
that describes a pattern pertaining to a PD source 
as against 108 tuple vector that is obtained from 
pre-processing methods. This reduction in the 
dimensionality of the classifier provides a 
mechanism to address the major issue pertaining 
to the ‘curse of dimensionality’ usually encountered 
in NN architectures.  

It is observed that this reduction in the 
dimensionality of the input feature vectors, in fact, 
does not lead to misclassification and on the 
contrary represents the appropriate changes that 
reflect the features of the system dynamics.   

4.4 Number of Iterations and States in 
Training a CDHMM 

It is also worth mentioning from Table 5 that the 
number of iterations for obtaining the optimal state 
estimates is reasonably low varying from 10- 20. 
This aspect of rapid training augurs well with 
regard to utilizing the non-stationary CDHMM 
classifier since research taken up earlier is based 
on only stationary DDHMMs.  

It is also observed that the proposed HMM 
classifier requires 5 states to model and describe 
the transition probabilities. This aspect of having 
about 4 or 5 states have been observed and 
utilized by researchers [2-3] who have utilized 
HMM for the PD pattern recognition task. 

5 CONCLUSIONS AND DISCUSSIONS 

It is evident from the aforesaid studies that for 
divergent types of pre-processing and feature 
extraction techniques taken up for study, the hybrid 
non-stationary CDHMM-PNN classifier provides an 
excellent recognition and classification mechanism. 
Further, the non-stationary representation provides 
an excellent framework for plausible means to 
understand the dynamics of the physics of 
discharge mechanism in real time applications. 
This aspect is made evident in this study as shown 
in Table 5. However the following issues are also 
worth mentioning: 1. Enhanced PNN versions such 
as Adaptive Time Varying PNN, Recursive PNN, 
Stofoscedastic PNN etc may be utilized in the 
classification phase for superior classification 

capability. Research is being carried out by the 
authors in this aspect which is presently ongoing. 
2. Training real time PD patterns involve large 
datasets which may hence necessitate appropriate 
center-selection procedures such as Orthogonal 
Least Square (OLS) algorithm, Recursive 
Orthogonal Least Square (ROLS) algorithm etc.  
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