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Abstract: This paper presents a hidden Markov model (HMM) based approach to partial 
discharge-led failure modelling.  The approach is based on a continuous probability 
density, left to right one way hidden Markov model which closely matches the initiation to 
breakdown transition sequence and development process of discharge-led failure. Initial 
estimates of the HMM parameters are discussed. Prior knowledge is incorporated to help 
the training. Results show that the HMM-based model is an effective approach for state 
recognition and prediction of PD-led failure. 
 

 
1 INTRODUCTION 

Partial discharge (PD) monitoring is of vital 
importance to indicate the insulation integrity of 
high voltage equipment, especially for equipment 
with a complex insulation system such as power 
transformers. In power transformers, PD can lead 
to surface tracking on solid insulation materials, 
which causes irreversible damage and may 
eventually lead to a breakdown of the oil system in 
such a way that the insulation properties of the oil 
can no longer be guaranteed.  

With the development of advanced sensors and 
data-acquisition systems, on-line monitoring of 
partial discharge becomes possible. Several 
international standards and guidance have been 
published on the topics of conventional [1-2] or 
unconventional [3] partial discharge 
measurements. However, there is still a lack of 
effective data analysis and modelling methods for 
the correct interpretation of the obtained PD 
monitoring data, especially to predict and prevent 
PD-led failures.  

The realization of auto-recognition of the severity 
or state of PD process is of great practical value, 
any change of the state in discharge degradation 
will be self-announced before the final failure. Thus, 
early-warning of PD-led failure can be achieved. 

Hidden Markov Model (HMM), among various 
intelligent techniques, shows the most promise in 
partial discharge progress modelling. Firstly 
popularized in speech recognition field since 1960s, 
its usage has been extended to a wide range of 
applications nowadays, such as partial discharge 
pattern classification/recognition [4-5] and 
transformer failure rate prediction [6], etc. 

HMM comprises an underlying stochastic process 
that is not directly observable but can be visualized 
through another set of stochastic process that 
produces a sequence of observations. This is in 

accordance with the nature of partial discharge 
developing process as that the real underlying 
developing state cannot be directly recognized 
without careful analysis of collected discharge 
signals.  

The paper presents an approach to build a partial 
discharge development model based on HMM. The 
principle of a HMM and the proposed modelling 
process for PD developing state recognition and 
prediction is introduced. The implementation 
process of the proposed model based on 
laboratory collected data is illustrated. The 
modelling results are also presented.  

2 GENERAL METHODOLOGY 

The hidden Markov model (HMM) is extended from 
the concept of Markov chain. It is developed to 
include cases where the observation is a 
probabilistic function of the state. According to their 
probability density descriptions, HMMs are further 
divided into continuous and discrete models, 
referred as CHMM and DHMM respectively. 

Continuous HMM is selected for this research due 
to the nature of our observation vectors as they are 
continuously distributed. 

Model structure has firstly to be selected. The left-
right CHMM is chosen to model the transition 
between PD’s developing states. The justification 
for using the left-right HMM for PD modelling and 
prediction is clear. Based on our previous 
experimental studies [7-8], it is shown that the 
development of partial discharges in some oil-
paper insulated PD models will going through 
several degradation states before the final 
insulation breakdown. These transitions are 
normally ordered, starting from the initiation, and 
then gradually progressing through successively 
more severe states before the final breakdown 
(failure). 
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The topology of the proposed left-right HMM is 
shown in figure 1. In which underlying 
states 1S , 2S , 3S and 4S are borne with their 
corresponding physical meanings which are 
specified as initiation state, developing state I, 
developing state II and pre-breakdown state 
respectively. 

The CHMM under consideration consists of : 

 A finite set of N states 1{ , , }= L NS S S . 

 A state transition probability distribution 
matrix { }= ijA a , where ija is the probability 
of making a transition to the state jS from 
state iS  during the next event, denoted as  

{ ( 1) | ( ) }= + = =ij i ja P q t S q t S  (1≤ i, j ≤N,  
1 ≤ t < T), ( )q t  is the state at time t . 

 An observation symbol probability 
distribution in state jS , { }= jB b ,i.e. 

( ( )) { ( ) | ( ) }= =j ib O t P O t q t S (1≤ i ≤ N,1 ≤ t 
<T). ( )O t is the observation vector at time t. 
Generally, the probability density function 
(p.d.f.) is considered to be of a mixture of 
Gaussian distribution, with M mixture 
centers.  

 An initial state probability distribution 
{ }πΠ = i , where { (1) }π = =i iP q S  (1≤ i ≤ N). 

Once N and M together with the three probability 
measures A , B  and Π are specified, CHMM is 
completely specified. For convenience, the 
compact notation of ( , , )λ = ΠA B  is used to denote 
the complete parameter set of the model.   

In PD development modelling, features extracted 
from the measured signals are observation 
symbols. The development stages are chosen as 
the underlying states. 

Figure 2 shows the general procedure of using 

HMM in PD modelling. The whole process mainly 
consists of two phases: (1) training and (2) 
recognition and prediction. In either phase, 
observation data has to be carefully collected; 
suitable features shall be selected as to best 
represent the information hidden in the raw data. 
Details as for this step will be discussed in Section 
3. 

2.1 Training 

The training stage attempts to optimize the model 
parameters ( , , )ΠA B  to best describe the 
observation sequences, which is to 
optimize ( | )λP O , the probability of observation 
sequence O given model λ .  

Baum-Welch re-estimation algorithm, also known 
as expectation maximization (EM) approach is 
used here for the training procedure. Details of the 
mathematical description of this algorithm can be 
referred to [9-10]. 

It is worth noting that, since the algorithm is 
conducted in an iterative procedure. Initial values 
of HMM parameters shall be carefully selected. 
Since it is a left-right HMM, the initial probability 
distribution can be naturally chosen as 

1 [10 0 0]Π =    . The initial value of the transition 
matrix is estimated with the method proposed in 
[10].  

What most problematic here is the initial estimation 
of B . Prior knowledge of the PD development 
process shall be incorporated in the estimation. 
Here, reasonable assumptions based on the prior 
knowledge are made that for each observation 
sequence, the four underlying states are uniformly 
distributed. Therefore, the mean and covariance of 
the observation can be calculated through k-means 
clustering process. For cases where 1M > , the 
observations are specified as multimodal Gaussian 
distribution, while in the case of 1M = , it is 
retrieved to unimodal Gaussian distribution.  

Suppose that M can be chosen from a series of 

Figure 1: Topology of the proposed HMM 
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numbers 1,2, ,= LM K . The optimal number, *M  
is chosen as the number which maximizes 

( | )λP O to the largest extent, which can be 
expressed as: *

1 K
arg max ( | ( ))λ

≤ ≤
=

m
M P O m , where 

( )λ m  is the HMM with m mixture centers for its 
observation probability. 

In real application, log ( | )λP O instead of 
( | )λP O is chosen to be maximized for its 

convenience in calculation. 

Several experimental trials are conducted in order 
to choose the optimal value of M. The results are 
discussed in Section 4. 

2.2 Recognition 

The recognition stage involves decoding of the 
underlying states for new observation sequences. 

 This means to find the optimal state sequence 
( (1), (2), (3), , ( 1), ( ))= −LQ q q q q T q T associated with 

the given observation 
sequence ( (1), (2, (3), , ( 1), ( ))= −LO O O O O T O T  and 
the trained model λ specified in the training stage.  

The criteria of optimality here is to search for a 
single best state sequence through Viterbi 
Algorithm [9-10].  

In the proposed modelling procedure, recognitions 
are made whenever a new observation is collected, 
with the features of discharging signals as 
observations. The underlying PD developing state 
is then decoded at each observation.  

2.3 Prediction 

In the prediction stage, the attention is focused on 
calculating the likelihood of entering the pre-
breakdown state in the next observation or next 
time step given current and previous observations 
based on specified model λ .  

The prediction is made based on the probabilistic 
structure of the HMM. The probability of a 
transition to state jS during the next observation is 
given by: 

 1

*

1

[ ( 1) | ] [ ( ) | ]

( )

λ λ

α
=

=

+ = = =

                             =

∑

∑

j

j i ij
i
j

t ij
i

P q t S P q t S a

i a
 (1) 

Where: * ( )α i t  is the normalized forward probability 
at time t for each state iS . It is calculated from the 
forward probability ( )α i t with the help of Bayes’ rule.  

The forward variable ( )α i t is defined as: 

 ( ) [ (1), (2), , ( ), ( ) | ]α λ= =Lt ii P O O O t q t S  (2) 

Indicating the joint probability of the partial 
observation sequence (until time t), 

(1), (2), , ( )LO O O t , and state iS  at time t given the 
model λ .  

The normalized forward probability * ( )α i t , which is 
the posterior probability, is calculated as: 

 

1

[ ( ) | (1), , ( ), ]
[ ( ) , (1), , ( ) | ] ( )

[ (1), , ( ) | ] ( )

λ
λ α

λ α
=

=
=

= =

∑

L
L

L

i

i t
N

t
j

P q t S O O t
P q t S O O t i

P O O t j
(3) 

Using equation (1), the probability of transitioning 
to each state, including the pre-breakdown state 
can be computed at each time t. Therefore, the 
prediction of PD-led failure is made with the 
calculation result of 4[ ( 1) | ]P q t S λ+ =  at each 
observation time. 

3 IMPLEMENTATION 

3.1 Data acquisition 

Experiments were carried out to obtain sufficient 
data to train and test the proposed HMM. In our 
experiments, UHF signals were captured from a 
transformer PD model as shown in figure 3. 

Sequences of UHF signals covering all the 
evolution states were recorded from the beginning 
of the PD until the insulation breakdown of the PD 
model under a pre-specified applied voltage. 
Altogether, three sets of discharging data with 
different lengths of discharging time were 
collected. 

3.2 Data preparation and HMM training 

To prepare the PD data for the training of the 
HMM,  pulse repetition rate, maximum pulse 
amplitude and average pulse amplitude of those 
collected UHF signal sequences were selected as 

Figure 3: Schematic of experimental 
setup 
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the observation features and were calculated in 
every 30minutes, results are shown in figure 4.  

Therefore, the original UHF signal sequences were 
transferred into the three new observations, with 
time unit set as 30min. The numbers of 
observations for sequence1, sequence2, 
sequence3 are 22, 17 and 14 respectively.  

Later on, HMMs are trained with these 
observations following the procedure showed in 
figure2.  

4 RESULTS AND DISCUSSIONS 

4.1 Choices of M value 

The number M is initially chosen from 1 to 5, their 
corresponding log ( | )λP O for each observation 
sequence are calculated and compared.  

Due to the limitation on the amount of training data, 
both the (1) all data training method, where all 
three observation sequences are taken as training 
data; and (2) the leave-one-out method, where the 
model is trained with one set of the observation 
sequence being left out of the training sets; are 
utilized here. 

Therefore, for each number of M, with 3 sequences 
by 4 models, 12 sets of log ( | )λP O are calculated. 
Altogether, for the 5 M values, 60 results are 
calculated.  

The mean value of log ( | )λP O at each M value is 
shown in table 1. The result shows that M=3 shall 
be the optimal choice for our present model since it 
generates the highest mean value of log ( | )λP O . 

 

4.2 Recognition and prediction result 

A HMM model with sequence 1 and sequence 3 as 
training data, and sequence 2 as testing data is 
trained to show the effectiveness of the proposed 
approach for PD-led failure modelling.  

State recognition results of the two training 
sequences are shown in figure 5. Figure 6 shows 
the state recognition result versus the number of 
observations for the training data, sequence 2.  

Table 1: mean value of log ( | )λP O v.s. M value 

M value Mean value of log ( | )λP O  
M=1 -109.98572 
M=2 -105.14081 
M=3 -98.74411 
M=4 -105.92714 
M=5 -100.41395 
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It is showed that the four underlying PD developing 
state can be successfully recognized. The state 
transition sequence is similar to the sequences of 
training data as shown in figure 5.  

The time of state transition can be identified, with 
the 13th observation being identified as the time of 
transitioning to pre-breakdown state from the 
previous state. It is 5 observations ahead, or 150 
minutes before the occurrence of the final 
breakdown.  

With the pre-failure state being identified, warnings 
can be given to the system. Therefore, appropriate 
actions can be taken in time to prevent the PD-led 
failure events; losses caused by the failure can be 
prevented. 
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Figure 6: State recognition and prediction result of 

testing data 

Figure 6 also plots the probability of entering the 
pre-breakdown state during the next observation 
versus the present observation for sequence 2. It is 
showed that the predicted probability can 
effectively track the PD-led failure process with the 
probability of entering pre-breakdown state 
increases with the number of observations.  

A high probability of 4[ ( 1) | ] 0.4228P q t S λ+ = =  is 
predicted at the 12th observation, where 12t = . The 
result can warn the system that there is a high 
probability of failure during the next observation, 
which is the 13th observation. This matches the 
recognition result that the sequence enters the pre-
breakdown stage at the 13th observation, which in 
a way proves the effectiveness of the methodology.  

With the help of prediction, system warnings can 
be made one observation time forward. Therefore, 
reaction time can be furtherly saved for failure 
prevention actions.  

5 CONCLUSION 

In this paper, a HMM based modelling procedure is 
proposed to model the PD-led failure process. The 
model is capable of making state 

identification/recognition and predictions for PD-led 
failures.  Experimental study is conducted to show 
the effectiveness of the proposed modelling 
procedure. With the help of the proposed model, 
early-warning of PD-led failures becomes possible. 
Reaction time can therefore be greatly saved to 
make time for failure prevention procedures to be 
taken. 
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