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Abstract: The Power flow problem is formulated in its basic analytical form and power, 
voltage constraints with the network makes the problem to be represented as system of 
simultaneous nonlinear equations and the numerical solution with Newton-Raphson 
method are of iterative in nature, includes computation of first order derivatives.  
Necessary features required for computation of these derivatives are simplicity, 
reusability, accuracy, errorless ness and high computational speed. Algorithmic or 
Automatic, differentiation  is concerned with the accurate and efficient evaluation of 
derivatives for equations of Power flow problem defined by the functions in computer 
programs, and the resulting derivative values can be used efficiently and easily by the 
remaining program that contain code only for the computation of the numeric mismatch 
values of  all equations. The power flow problem is solved with a Newton-Raphson 
method and necessary derivatives for the power flow equations are computed based on 
an Automatic Differentiation tool, namely ADMAT coded in MATLAB. In this paper 
Automatic Differentiation method is performed on a five-bus test system and results of 
this work explains the benefits of the Automatic Differentiation comparing to all other 
approaches to solve the Jacobian Elements in Power Flow Equations. 
 

 
1 INTRODUCTION 

Power flow analysis requires calculation of 
derivatives of expressions by applying many 
numerical techniques. In power flow study 
expressions for real and reactive power made by 
applying Newton-Raphson method and determined 
in every iteration.  The power flow solution is a 
powerful tool to carry out different goals like the 
economical load dispatch, the optimized voltage 
profile or the preparation of the required reactive 
power compensation plan. Recent power flow 
solutions widely use a powerful solving method 
rests on a non-linear programming approach: 
Newton-Raphson method. This method copes with 
non-linear objectives and constraints and demands 
for accurate evaluations of first order derivatives of 
power system network equations.  In general, 
sparse Jacobian and Hessian matrices have been 
calculated by hand calculations and finite-
differentiation method because of runtime 
performance. With the help of Algorithmic Code 
Differentiation or Automatic Differentiation (AD) 
tools like ADMAT, the tedious and error-prone 
work of computation of first order derivatives 
becomes very simple. The load flow problem dealt 
here is to evaluate an power system network at 
state variables and to maintain control variables so 
that operating constraints and physical constraints 
are being satisfactory. 

 
2 MODELLING TECHNIQUE OF POWER 

FLOW PROBLEM 

Assuming a N-Bus power system network and 
power transfer between kth bus and mth bus of a 

given system, the power mismatch equations ∆P 
and ∆Q at kth bus are the power balance equations 
and given as 

0=−−=∆ kCalLkGkk PPPP               (1) 

0=−−=∆ kCalLkGkk QQQQ               (2) 

Where Pk, Qk are the mismatch active, reactive 
powers at bus k, respectively. PGk and QGk refers 
the active, reactive power injections of the 
generator at bus k. It is assumed that these 
variables can be regulated by the plant operator. 
PLk, QLk represent the active and reactive powers 
drawn at the load bus k, respectively. At steady 
state conditions the operator has control of these 
variables, and in power flow problem formulation 
these are treated as known variables [1, 2].The 
transmitted active, reactive powers, PkCal and QkCal  
are based on nodal voltages, phase angles and 
line impedances and calculated by the power flow 
equations. The functions for PkCal, Qkcal can be 
represented as 

 

)]()([2
mkkmmkkmmkkkkkCal SinBCosGVVGVP θθθθ −−+= +

                 (3) 

)]()([2
mkkmmkkmmkkkkkCal CosBSinGVVBVQ θθθθ −−+−= −

                  (4) 

In order to put on the Newton–Raphson method 
to deal with the power flow solution, the 
appropriate equations should be expressed in 
terms of Equation (1), where X denotes the set of 
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unknown nodal voltage magnitudes (v’s) and 
phase angles (θ ’s) [1,2]. The power mismatch 
equations ∆P for real power, ∆Q for reactive power 
are evaluated around an initial point (θ (0), V (0)) 
and therefore the power flow Newton–Raphson 
approach is represented by the following Jacobian 
relationship: 
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  F(X(i-1)) J(X(i-1))     ∆X(i) 

The elements in the Jacobian consists of (nb-1) 
× (nb-1) size and each element given as 

m

kP

θ∂
∂

, m
m

k
V

V

P

∂
∂                 (6) 

m

kQ

θ∂
∂

, m
m

k
V

V

Q

∂
∂

               (7) 

 Where k =1…nb, m = 1…nb and ‘nb’ is number of 
buses but exclude the slack bus entries.   
Additionally, if buses ‘k’ and ‘m’ are not linked by 
transmission element, corresponding k–m entry in 
Jacobian is null. Having to the low degree of 
connectivity between all buses of the practical 
power systems, Jacobian matrices of power flows 
are of highly sparse. The efficiency of the Newton–
Raphson method to acquire proper iterative 
solutions is depends on the choice of feasible 
initial values for the state variables like bus 
voltages, angles associated in the power flow 
problem and changes in the values of state 
variables ∆ V, ∆ θ  estimated for every iteration 
making use of equation (5) and the iterative 
solution represented as the function of correction 
vector ∆X (i) : 

 

)()( )1()1(1)( −−−−=∆ iii XFXJX               (8) 
 
And the state variables are updated as 
 

)()1()( iii XXX ∆+= −
               (9) 

 
The computing is repeated with upgraded values 
of X (i) of equation (9), such that the value attained 
by the ∆X is within the tolerance. In this practice for 
each iteration, exact errorless computing of 
complex first order derivatives (Jacobian elements) 
is desired [3]. Ample amount of the computing 
work load is to be committed to obtain the first 
order derivatives of Jacobian elements. The 
original functions are usually described in a higher 
level programming languages like MATLAB, C, and 
C++. There are several ways to obtain the first 
order derivatives of a function with a computer 

program: like (i) Hand coding (ii) Finite-difference 
approximation (iii) Symbolic differentiation .Hand 
coding is complex for large functions, memory & 
time requirements are large and sparse is tedious 
task. Finite-difference approximation results in 
truncation and round-off errors causing failure of 
accuracy. Work ratio increases as number of 
variable in expression increases. Whereas 
Symbolic differentiation run into resource limitation 
and cannot handle CPU intensive processes when 
the dimension of the matrices is large .Owing to 
above explained disadvantages ,in this paper, a 
new technique known as Algorithmic Code 
Differentiation or Automatic Differentiation (AD)  is 
propounded to compute the Jacobian elements. 

 
3 TECHNIQUE OF ALGORITHMIC CODE 

DIFFERENTIATION 

As explained in the above sections, the most 
familiar methods of computational differentiation 
have considerable disadvantages, made them 
infeasible for various complex applications. 
Desirably, a computational differentiation 
technique should (i) Compute derivatives 
automatically, exactly and fastly. (ii) Be able to 
handle arbitrary high-level codes, rather than 
expressions (iii) Compute exact derivatives (free of 
truncation errors) (iv) Compute derivatives at the 
cost independent of the number of variables. 
Automatic differentiation (AD) has these four 
properties; it computes derivatives of functions 
represented by means of a program written in a 
high-level language such as MATLAB, C, and C++. 
The AD approach depends on the principle of 
chain rule for calculating derivatives [5] as shown 
in equation (10): 
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It is employed in a mechanical fashion to compute 
derivatives of a complex functions. The AD 
software packages generate code for the 
derivatives rather than full symbolic expressions 
with respect to the independent variables.  

Assume the function ),(xfy =  RRf n
→:  

represented by the following subroutine: 

 
 

Figure 1: Representation of xi in terms of already 
computed xj 
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Subroutine that shown in Figure.1 represents the 
function f(x) as a composition of the elementary or 

library functions{ } pn
niif +

+= 1 . Where if , is a function of 

already computed quantities jx , iJj ∈ .   

3.1 Algorithmic Code Differentiation Applied 
to Power Flow Studies 

 To explain the method of Algorithmic Code 
Differentiation by applying to the power flow 
equations for computing the Jacobian elements or 
first order derivatives, here consider a partial 
portion of network with two number of  buses(k and 
m) linked by a transmission line as shown in 
Figure.2 

 

 
 
Figure 2: Representation of partial portion of 

power system network 
 

 Active power Pk is the function of nodal voltages 
Vm, Vk, power angles mθ , kθ and network 
impedance Zkm. Pk is computed using the equation 
given by equation (3).Rewriting it gives: 
 

)]()([2
mkkmmkkmmkkkkkCal SinBCosGVVGPP θθθθ −−+= +

                  (3) 
 
Independent variables of equation (3) are given as: 
 
[ 4321 xxxx ] = [ kmkm VV θθ ]          (11) 

 
Substituting Eq. (11) in Eq. (3) gives: 

)]sin()cos([ 43432
2
1 1 xxBxxGxxGxPy kmkmKKk −+−+==    (12) 

Also the gradient vector is given as:  
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To utilise the elementary rules of the calculus for 

differentiation, Eq. (12) can be decomposed into 
basic functions as shown in Figure 3. The variables 
{ xi }as  i = 5 to 15 in Figure 3 are the intermediate 
variables in which the results of the elementary or 
library functions are stored. Fig. 4 shows the 
computational graph of the function shown in Eq. 
(12) with an acyclic direction. Each node in the 
graph indicates an intermediate or independent 
variable. And arrow runs from the node xj to xi 

representing dependency between variables. 

Direction xj to xi indicates that xi depends on the 
already computed variable xj.   

 

1561561616 ),( xxxxfxy +===  

141314131515 ),( xxxxfx +==  

1271271414 ),( xxxxfx ==  

1171171313 ),( xxxxfx ==  

10101212 )( xGxfx km==  

991111 )( xBxfx km==  

)cos()( 881010 xxfx ==  

)sin()( 8899 xxfx ==  

)(),( 434388 xxxxfx −==  

212177 ),( xxxxfx ==  

kkGxxfx 2
1166 )( ==  
2
1155 )( xxfx ==  

 
Figure 3: Decomposition of Eq. (12) and 
representing in terms of intermediate variables 

 
 

 
    

Figure 4: Directed acyclic computational graph of 
the function of Eq. (12) 

Two approaches of Automatic Differentiation are 
developed namely Forward mode and Reverse 
mode. In this power flow problem Forward mode of 
Automatic Differentiation is implemented which is 
known as bottom to top approach, where the 
process starts from independent variables (x1, x2, 
x3, and x4 ) to dependent variables (x5 to x15) as 

shown in figure 4. Using xi the gradient vector ix∇  
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is computed by the source transformation. Fig.5 
shows the calculation of gradient vector of given 
function by using Fig.3 and Fig. 4 in the Forward 
mode approach. It is clear from the Fig. 5 that cost 
of computational work to calculate gradient vectors 
is directly proportional to the number of 
independent variables. But the effectiveness of the 
Automatic Differentiation is that, for a large system 
where numbers of independent variables are very 
large, in contrast to the above said, cost of 
computational work is decreases as number of 
independent variables increases. The relation 
between cost of computation and variables is given 
by: 

 

i

p

ni
ii nnffqffq +∇=∇ ∑
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},{},{

1              
(14) 

.  
Where nni = (number of multiplications + number of 
additions). And ‘q’ is the cost of computation. 
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Figure 5:  Calculation of gradient vector for xi of 
function shown by Eq.(12). 
 
In case of differentiation of multiple functions of a 

system of  )(xfy =  where ,: mn RRf →  
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4 ALGORITHMIC DIFFERENTIATION BASED       

ON OBJECT ORIENTED PROGRAMMING
  

There are two ways of implementation of AD in the 
Forward Mode and Reverse Mode propagation of 
derivatives. Namely (i) Source Transformation 

Technique (ii) Object-Oriented Programming 
Operator Overloading Technique. 
 

Source Transformation Technique uses a pre-
processor (e.g. ADIFOR in FORTRAN) for the 
generation of derivative code. Source 
Transformation output is compliable and resulted 
code runs faster. Disadvantages of this technique 
are, it needs highly complex exceptional compiler 
type software to read in computer programs and 
justify the appropriate statements which requires 
the differentiation. In Source Transformation it is 
difficult to handle the reverse mode propagation in 
the presence of branches and data-dependent 
loops.  
Object-Oriented Programming Operator 
Overloading Technique takes the benefit of ability 
to create new classes using powerful programming 
languages such as C, C++ and MATAB. Objects of 
the new A D class will stores the values and 
derivatives of a given expression [4]. Library 
functions and operators of the programming 
language are extended based on Operator 
Overloading. Given function that to be 
differentiated by the AD tool is coded by the 
program in the combination of these operators and 
from very fundamental derivative principles of 
calculus such as addition, subtraction, 
multiplication, division and chain rule. AD object of 
a derived class contains methods in which, 
equation or function to be differentiated will be 
coded, and the variables of the class object are 
known as the Active variables, these variables hold 
the value of the variable as well as the derivative 
information of the variable. Actual computational 
statements of the user provided code need not to 
be altered for the purpose of the Automatic 
Differentiation. All operators are overloaded and 
their operands are the active variables. An 
example function of AD class object is given below 
in Fig.6 as shown below. 

 

end
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Figure 6: Function of AD class object containing 
active variables

 

 
4.1  Computation of Sparse Jacobian Using 

ADMAT: An A D Tool Developed Using 
Object Oriented Features of MATLAB 

 
ADMAT is a powerful Algorithmic code 
Differentiation tool box designed in MATLAB to 
relief MATLAB users from computing first and 
second order derivatives precisely, expertly and 
automatically. To use ADMAT, the users of 
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MATLAB need to supply only an M-File to ADMAT, 
of equations or functions (which are to be require 
differentiation) which are coded using the 
MATLAB. Name of this M-File (string variable) and 
required input data passed as arguments to the 
methods of ADMAT classes those returns correct 
value and derivatives of that function.ADMAT 
contains rich set of functions derived from by 
overloading elementary operators and functions of 
MATLAB language. These functions handle the 
Jacobian, Hessian elements and also the sparsity. 
 
Two functions of ADMAT plays crucial role in 
computing the Sparse Jacobian matrix [6]. 
Description of these functions as follows: 
      Function ‘getjpi ( )’ computes sparsity 
information for efficient computation of Jacobian 
matrix. It is invoked as: 
 
[JPI, SPJ] = getjpi (fun, n, m, Extra, method, SPJ); 
 
Function ‘evalj ( )’ computes the given functions 
values and its jacobian elements at point x (Where 
the vector X represents the state variable vector). It 
is invoked as: 
 
[F, J] = evalj (fun, x, Extra, m, JPI, verb, stepsize); 
 
5 CASE STUDY 

Algorithmic Code Differentiation using ADMAT in 
the MATLAB environment is applied to a test 
system to solve the power flow solution with 
Newton-Raphson method. The test system shown 
in Fig. 7, has five buses, two generators, seven 
transmission lines and four loads with sufficient 
data. 
 

 
 

Figure 7:   Five bus test power system with data 
 

The given system data ,bus data ,generator data, 
branch data is coded in a main program written in 
MATLAB, to form YBus, to calculate Power 
mismatch, to control Generator limits, sufficient 
number of functions are developed in the main 
program. 
The main program relieves and calls ADMAT tool 
whenever required to compute Jacobian elements 
and the well designed functions of ADMAT will do 
this task and returns the accurate values of 

derivatives of Jacobian elements to the main 
program. 
The procedure to be followed by the ADMAT to 
compute derivatives of a given function or equation 
is as shown: 
 
1) Code the function or equation to be 
differentiated, in MATLAB and name this M-File 
with a string variable. Here in our power flow 
problem it is required to differentiate power flow 
equations (Eq.(3) and Eq.(4) ) w.r.t the state 
variables (voltages and angles) to compute 
Jacobian elements, therefore code these 
equations in MATLAB.Let name it as ‘powercal.m’ 
 
2) Set the problem size. Suppose for a five 
bus(n=5) system we set size as  (n-1)×2 as first 
bus generally omitted as it is treated as slack bus: 
      

›› x=9 
 
3) Initialize the state variables vector x. For five 
bus system, four nodal voltage values and angle 
values, which are state variables, initialized in 
vector x, all five voltage values set to 1.0 and 
angles are set to 0.0 as shown: 
      
  ›› i=1: m   
  ›› x=ones (m, 1)   
  ›› i=m+1: n   
  ›› x=zeros (n,1) 
 
4).Compute the sparsity pattern information of the 
function “powercal.m” by calling ‘getjpi ()’function of 
the ADMAT as shown: 
 

JPI = getjpi (powercal, n); 
 
5).Compute the function values and Jacobian 
values of the given function (based on the sparsity 
information obtained by getjpi ( )) by calling “evalj 
()”function of the ADMAT as follows: 
 

[F, J] = evalj (powercal, x, [], n, JPI); 
 
Where ‘F’ returns the function value and ‘J’ returns 
the Jacobian values. 
As the main program calls the above two function 
of the ADMAT, they compute accurate values of 
the Jacobian elements and return these values to 
the main program for the further use in main 
program such as to compute changes in state 
variable vector to complete the power flow solution. 
 
6 RESULTS AND DICUSSIONS 

The five bus test system shown in Fig.9 is 
simulated to solve the power flow problem in the 
environment of MATLAB using both type of 
differentiation techniques, namely Finite 
Differentiation and Automatic Differentiation. 
 

The results of both presented as shown below. 

XVII International Symposium on High Voltage Engineering, Hannover, Germany, August 22-26, 2011



 
TABLE 1: Nodal Voltages and Angles computed 
using Finite Differentiation 

 
 
TABLE 2:Nodal Voltages and Angles with 

Algorithmic Differentiation 
 
 
 TABLE 3:Error values (of Voltages and Angles)  
corrected by Algorithmic Differentiation, that due 
to Finite-Differentiation Approximation 

 

 
From the above results it is observed that 
computation of the Jacobians as well as the nodal 
voltages, phase angles, real powers and reactive 
powers of the load flow solution using the Finite 
Differentiation is tedious and error prone and the 
output values obtained are approximate values. 
Alternatively computing the Jacobians, nodal 
voltages, phase angles, real powers and reactive 
powers of the load flow solution using the 
Algorithmic Differentiation is very simple, efficient 
and gives the very accurate, errorless solution up to 
the precision of 1e-08. 
Table 1 and Table 2 gives the computation of nodal 
voltages and phase angles of test system using 
Finite and Algorithmic Differentiation respectively. 
And Table 3 gives the error caused while 
computation of nodal voltages and phase angles by 

the Finite Differentiation approximation and that is 
corrected by the Algorithmic Differentiation. 
 

7 CONCLUSIONS 

In this paper it has been presented that 
computation of the first order derivatives (or 
Jacobian elements) of power flow problem using 
Automatic Differentiation technique is simpler, 
flexible and accurate over the traditional Finite 
Differentiation technique. It has been observed that 
computational cost and time is very less due to the 
decomposition of complex expressions into simple 
terms.  

A model has been formulated for a standard five 
bus power system network then  the technique of 
Automatic Differentiation implemented and tested 
using that system and the effectiveness of this 
technique is demonstrated. 
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