
ALGORITHMIC CODE DIFFERENTIATION APPROACH TO SOLVE JACOBIAN
ELEMENTS IN POWER FLOW EQUATIONS

A. PRASAD RAJU1, J.AMARNATH2, D.SUBBARAYUDU2, M. RAMESH REDDY1

1Sree Chaitanya College of Engineering, Karimnagar-02, A P, India.
2J N T U H College of Engineering, Hyderabad-85, A P, India.

Email:Prasadraj55@gmail.com

Abstract: The Power flow problem is formulated in its basic analytical form and power,
voltage constraints with the network makes the problem to be represented as system of
simultaneous nonlinear equations and the numerical solution with Newton-Raphson
method are of iterative in nature, includes computation of first order derivatives.
Necessary features required for computation of these derivatives are simplicity,
reusability, accuracy, errorless ness and high computational speed. Algorithmic or
Automatic, differentiation is concerned with the accurate and efficient evaluation of
derivatives for equations of Power flow problem defined by the functions in computer
programs, and the resulting derivative values can be used efficiently and easily by the
remaining program that contain code only for the computation of the numeric mismatch
values of all equations. The power flow problem is solved with a Newton-Raphson
method and necessary derivatives for the power flow equations are computed based on
an Automatic Differentiation tool, namely ADMAT coded in MATLAB. In this paper
Automatic Differentiation method is performed on a five-bus test system and results of
this work explains the benefits of the Automatic Differentiation comparing to all other
approaches to solve the Jacobian Elements in Power Flow Equations.

1 INTRODUCTION

Power flow analysis requires calculation of
derivatives of expressions by applying many
numerical techniques. In power flow study
expressions for real and reactive power made by
applying Newton-Raphson method and determined
in every iteration. The power flow solution is a
powerful tool to carry out different goals like the
economical load dispatch, the optimized voltage
profile or the preparation of the required reactive
power compensation plan. Recent power flow
solutions widely use a powerful solving method
rests on a non-linear programming approach:
Newton-Raphson method. This method copes with
non-linear objectives and constraints and demands
for accurate evaluations of first order derivatives of
power system network equations. In general,
sparse Jacobian and Hessian matrices have been
calculated by hand calculations and finite-
differentiation method because of runtime
performance. With the help of Algorithmic Code
Differentiation or Automatic Differentiation (AD)
tools like ADMAT, the tedious and error-prone
work of computation of first order derivatives
becomes very simple. The load flow problem dealt
here is to evaluate an power system network at
state variables and to maintain control variables so
that operating constraints and physical constraints
are being satisfactory.

2 MODELLING TECHNIQUE OF POWER

FLOW PROBLEM

Assuming a N-Bus power system network and
power transfer between kth bus and mth bus of a

given system, the power mismatch equations ∆P
and ∆Q at kth bus are the power balance equations
and given as

0=−−=∆ kCalLkGkk PPPP (1)

0=−−=∆ kCalLkGkk QQQQ (2)

Where Pk, Qk are the mismatch active, reactive
powers at bus k, respectively. PGk and QGk refers
the active, reactive power injections of the
generator at bus k. It is assumed that these
variables can be regulated by the plant operator.
PLk, QLk represent the active and reactive powers
drawn at the load bus k, respectively. At steady
state conditions the operator has control of these
variables, and in power flow problem formulation
these are treated as known variables [1, 2].The
transmitted active, reactive powers, PkCal and QkCal
are based on nodal voltages, phase angles and
line impedances and calculated by the power flow
equations. The functions for PkCal, Qkcal can be
represented as

)]()([2
mkkmmkkmmkkkkkCal SinBCosGVVGVP θθθθ −−+= +

 (3)

)]()([2
mkkmmkkmmkkkkkCal CosBSinGVVBVQ θθθθ −−+−= −

 (4)

In order to put on the Newton–Raphson method
to deal with the power flow solution, the
appropriate equations should be expressed in
terms of Equation (1), where X denotes the set of

XVII International Symposium on High Voltage Engineering, Hannover, Germany, August 22-26, 2011

unknown nodal voltage magnitudes (v’s) and
phase angles (θ ’s) [1,2]. The power mismatch
equations ∆P for real power, ∆Q for reactive power
are evaluated around an initial point (θ (0), V (0))
and therefore the power flow Newton–Raphson
approach is represented by the following Jacobian
relationship:










∂
∂
∂
∂

=








∆
∆

θ

θ
Q

P

Q

P










∂
∂
∂
∂

V
V

Q

V
V

P

















∆
∆

V

V

θ

 (5)

 F(X(i-1)) J(X(i-1)) ∆X(i)

The elements in the Jacobian consists of (nb-1)
× (nb-1) size and each element given as

m

kP

θ∂
∂

, m
m

k
V

V

P

∂
∂ (6)

m

kQ

θ∂
∂

, m
m

k
V

V

Q

∂
∂

 (7)

 Where k =1…nb, m = 1…nb and ‘nb’ is number of
buses but exclude the slack bus entries.
Additionally, if buses ‘k’ and ‘m’ are not linked by
transmission element, corresponding k–m entry in
Jacobian is null. Having to the low degree of
connectivity between all buses of the practical
power systems, Jacobian matrices of power flows
are of highly sparse. The efficiency of the Newton–
Raphson method to acquire proper iterative
solutions is depends on the choice of feasible
initial values for the state variables like bus
voltages, angles associated in the power flow
problem and changes in the values of state
variables ∆ V, ∆ θ estimated for every iteration
making use of equation (5) and the iterative
solution represented as the function of correction
vector ∆X (i) :

)()()1()1(1)(−−−−=∆ iii XFXJX (8)

And the state variables are updated as

)()1()(iii XXX ∆+= −
 (9)

The computing is repeated with upgraded values
of X (i) of equation (9), such that the value attained
by the ∆X is within the tolerance. In this practice for
each iteration, exact errorless computing of
complex first order derivatives (Jacobian elements)
is desired [3]. Ample amount of the computing
work load is to be committed to obtain the first
order derivatives of Jacobian elements. The
original functions are usually described in a higher
level programming languages like MATLAB, C, and
C++. There are several ways to obtain the first
order derivatives of a function with a computer

program: like (i) Hand coding (ii) Finite-difference
approximation (iii) Symbolic differentiation .Hand
coding is complex for large functions, memory &
time requirements are large and sparse is tedious
task. Finite-difference approximation results in
truncation and round-off errors causing failure of
accuracy. Work ratio increases as number of
variable in expression increases. Whereas
Symbolic differentiation run into resource limitation
and cannot handle CPU intensive processes when
the dimension of the matrices is large .Owing to
above explained disadvantages ,in this paper, a
new technique known as Algorithmic Code
Differentiation or Automatic Differentiation (AD) is
propounded to compute the Jacobian elements.

3 TECHNIQUE OF ALGORITHMIC CODE

DIFFERENTIATION

As explained in the above sections, the most
familiar methods of computational differentiation
have considerable disadvantages, made them
infeasible for various complex applications.
Desirably, a computational differentiation
technique should (i) Compute derivatives
automatically, exactly and fastly. (ii) Be able to
handle arbitrary high-level codes, rather than
expressions (iii) Compute exact derivatives (free of
truncation errors) (iv) Compute derivatives at the
cost independent of the number of variables.
Automatic differentiation (AD) has these four
properties; it computes derivatives of functions
represented by means of a program written in a
high-level language such as MATLAB, C, and C++.
The AD approach depends on the principle of
chain rule for calculating derivatives [5] as shown
in equation (10):










∂
∂










∂
∂=

∂
∂

=== 0)00
)()())((

(tttgstt
t

tg

s

sf

t

tgf
 (10)

It is employed in a mechanical fashion to compute
derivatives of a complex functions. The AD
software packages generate code for the
derivatives rather than full symbolic expressions
with respect to the independent variables.

Assume the function),(xfy = RRf n
→:

represented by the following subroutine:

Figure 1: Representation of xi in terms of already
computed xj

XVII International Symposium on High Voltage Engineering, Hannover, Germany, August 22-26, 2011

Subroutine that shown in Figure.1 represents the
function f(x) as a composition of the elementary or

library functions{ } pn
niif +

+= 1 . Where if , is a function of

already computed quantities jx , iJj ∈ .

3.1 Algorithmic Code Differentiation Applied
to Power Flow Studies

 To explain the method of Algorithmic Code
Differentiation by applying to the power flow
equations for computing the Jacobian elements or
first order derivatives, here consider a partial
portion of network with two number of buses(k and
m) linked by a transmission line as shown in
Figure.2

Figure 2: Representation of partial portion of

power system network

 Active power Pk is the function of nodal voltages
Vm, Vk, power angles mθ , kθ and network
impedance Zkm. Pk is computed using the equation
given by equation (3).Rewriting it gives:

)]()([2
mkkmmkkmmkkkkkCal SinBCosGVVGPP θθθθ −−+= +

 (3)

Independent variables of equation (3) are given as:

[4321 xxxx] = [kmkm VV θθ] (11)

Substituting Eq. (11) in Eq. (3) gives:

)]sin()cos([43432
2
1 1 xxBxxGxxGxPy kmkmKKk −+−+== (12)

Also the gradient vector is given as:











∂
∂

∂
∂

∂
∂

∂
∂=∇=∇

4321 x

y

x

y

x

y

x

y
yPk

T
 (13)

To utilise the elementary rules of the calculus for

differentiation, Eq. (12) can be decomposed into
basic functions as shown in Figure 3. The variables
{ xi }as i = 5 to 15 in Figure 3 are the intermediate
variables in which the results of the elementary or
library functions are stored. Fig. 4 shows the
computational graph of the function shown in Eq.
(12) with an acyclic direction. Each node in the
graph indicates an intermediate or independent
variable. And arrow runs from the node xj to xi

representing dependency between variables.

Direction xj to xi indicates that xi depends on the
already computed variable xj.

1561561616),(xxxxfxy +===

141314131515),(xxxxfx +==

1271271414),(xxxxfx ==

1171171313),(xxxxfx ==

10101212)(xGxfx km==

991111)(xBxfx km==

)cos()(881010 xxfx ==

)sin()(8899 xxfx ==

)(),(434388 xxxxfx −==

212177),(xxxxfx ==

kkGxxfx 2
1166)(==
2
1155)(xxfx ==

Figure 3: Decomposition of Eq. (12) and
representing in terms of intermediate variables

Figure 4: Directed acyclic computational graph of
the function of Eq. (12)

Two approaches of Automatic Differentiation are
developed namely Forward mode and Reverse
mode. In this power flow problem Forward mode of
Automatic Differentiation is implemented which is
known as bottom to top approach, where the
process starts from independent variables (x1, x2,
x3, and x4) to dependent variables (x5 to x15) as

shown in figure 4. Using xi the gradient vector ix∇

XVII International Symposium on High Voltage Engineering, Hannover, Germany, August 22-26, 2011

is computed by the source transformation. Fig.5
shows the calculation of gradient vector of given
function by using Fig.3 and Fig. 4 in the Forward
mode approach. It is clear from the Fig. 5 that cost
of computational work to calculate gradient vectors
is directly proportional to the number of
independent variables. But the effectiveness of the
Automatic Differentiation is that, for a large system
where numbers of independent variables are very
large, in contrast to the above said, cost of
computational work is decreases as number of
independent variables increases. The relation
between cost of computation and variables is given
by:

i

p

ni
ii nnffqffq +∇=∇ ∑

+=
},{},{

1
(14)

.
Where nni = (number of multiplications + number of
additions). And ‘q’ is the cost of computation.

115 .2 xxx ∇=∇

116 ..2 xGxx kk ∇=∇

12217 .. xxxxx ∇+∇=∇

438 xxx ∇−∇=∇

889).cos(xxx ∇=∇

8810).sin(xxx ∇−=∇

911 . xBx km ∇=∇

1012 .∇=∇ kmGx

71111713 .. xxxxx ∇+∇=∇

71212714 .. xxxxx ∇+∇=∇

141315 xxx ∇+∇=∇

156 xxy ∇+∇=∇

Figure 5: Calculation of gradient vector for xi of
function shown by Eq.(12).

In case of differentiation of multiple functions of a

system of)(xfy = where ,: mn RRf →





















∇

∇

T
m

T

y

y

.

.
1

=

























∂
∂

∂
∂

∂
∂

∂
∂

n

mm

n

x

y

x

y

x

y

x

y

..

..

..

..

1

1

1

1





















∇

∇

T
n

T

x

x

.

.
1

 (15)

4 ALGORITHMIC DIFFERENTIATION BASED

ON OBJECT ORIENTED PROGRAMMING

There are two ways of implementation of AD in the
Forward Mode and Reverse Mode propagation of
derivatives. Namely (i) Source Transformation

Technique (ii) Object-Oriented Programming
Operator Overloading Technique.

Source Transformation Technique uses a pre-
processor (e.g. ADIFOR in FORTRAN) for the
generation of derivative code. Source
Transformation output is compliable and resulted
code runs faster. Disadvantages of this technique
are, it needs highly complex exceptional compiler
type software to read in computer programs and
justify the appropriate statements which requires
the differentiation. In Source Transformation it is
difficult to handle the reverse mode propagation in
the presence of branches and data-dependent
loops.
Object-Oriented Programming Operator
Overloading Technique takes the benefit of ability
to create new classes using powerful programming
languages such as C, C++ and MATAB. Objects of
the new A D class will stores the values and
derivatives of a given expression [4]. Library
functions and operators of the programming
language are extended based on Operator
Overloading. Given function that to be
differentiated by the AD tool is coded by the
program in the combination of these operators and
from very fundamental derivative principles of
calculus such as addition, subtraction,
multiplication, division and chain rule. AD object of
a derived class contains methods in which,
equation or function to be differentiated will be
coded, and the variables of the class object are
known as the Active variables, these variables hold
the value of the variable as well as the derivative
information of the variable. Actual computational
statements of the user provided code need not to
be altered for the purpose of the Automatic
Differentiation. All operators are overloaded and
their operands are the active variables. An
example function of AD class object is given below
in Fig.6 as shown below.

end

zzy

zxz

xxz

xgetfunyfunction

;

;

;

)(

∗=
+=
∗=

=

Figure 6: Function of AD class object containing
active variables

4.1 Computation of Sparse Jacobian Using

ADMAT: An A D Tool Developed Using
Object Oriented Features of MATLAB

ADMAT is a powerful Algorithmic code
Differentiation tool box designed in MATLAB to
relief MATLAB users from computing first and
second order derivatives precisely, expertly and
automatically. To use ADMAT, the users of

XVII International Symposium on High Voltage Engineering, Hannover, Germany, August 22-26, 2011

MATLAB need to supply only an M-File to ADMAT,
of equations or functions (which are to be require
differentiation) which are coded using the
MATLAB. Name of this M-File (string variable) and
required input data passed as arguments to the
methods of ADMAT classes those returns correct
value and derivatives of that function.ADMAT
contains rich set of functions derived from by
overloading elementary operators and functions of
MATLAB language. These functions handle the
Jacobian, Hessian elements and also the sparsity.

Two functions of ADMAT plays crucial role in
computing the Sparse Jacobian matrix [6].
Description of these functions as follows:
 Function ‘getjpi ()’ computes sparsity
information for efficient computation of Jacobian
matrix. It is invoked as:

[JPI, SPJ] = getjpi (fun, n, m, Extra, method, SPJ);

Function ‘evalj ()’ computes the given functions
values and its jacobian elements at point x (Where
the vector X represents the state variable vector). It
is invoked as:

[F, J] = evalj (fun, x, Extra, m, JPI, verb, stepsize);

5 CASE STUDY

Algorithmic Code Differentiation using ADMAT in
the MATLAB environment is applied to a test
system to solve the power flow solution with
Newton-Raphson method. The test system shown
in Fig. 7, has five buses, two generators, seven
transmission lines and four loads with sufficient
data.

Figure 7: Five bus test power system with data

The given system data ,bus data ,generator data,
branch data is coded in a main program written in
MATLAB, to form YBus, to calculate Power
mismatch, to control Generator limits, sufficient
number of functions are developed in the main
program.
The main program relieves and calls ADMAT tool
whenever required to compute Jacobian elements
and the well designed functions of ADMAT will do
this task and returns the accurate values of

derivatives of Jacobian elements to the main
program.
The procedure to be followed by the ADMAT to
compute derivatives of a given function or equation
is as shown:

1) Code the function or equation to be
differentiated, in MATLAB and name this M-File
with a string variable. Here in our power flow
problem it is required to differentiate power flow
equations (Eq.(3) and Eq.(4)) w.r.t the state
variables (voltages and angles) to compute
Jacobian elements, therefore code these
equations in MATLAB.Let name it as ‘powercal.m’

2) Set the problem size. Suppose for a five
bus(n=5) system we set size as (n-1)×2 as first
bus generally omitted as it is treated as slack bus:

›› x=9

3) Initialize the state variables vector x. For five
bus system, four nodal voltage values and angle
values, which are state variables, initialized in
vector x, all five voltage values set to 1.0 and
angles are set to 0.0 as shown:

 ›› i=1: m
 ›› x=ones (m, 1)
 ›› i=m+1: n
 ›› x=zeros (n,1)

4).Compute the sparsity pattern information of the
function “powercal.m” by calling ‘getjpi ()’function of
the ADMAT as shown:

JPI = getjpi (powercal, n);

5).Compute the function values and Jacobian
values of the given function (based on the sparsity
information obtained by getjpi ()) by calling “evalj
()”function of the ADMAT as follows:

[F, J] = evalj (powercal, x, [], n, JPI);

Where ‘F’ returns the function value and ‘J’ returns
the Jacobian values.
As the main program calls the above two function
of the ADMAT, they compute accurate values of
the Jacobian elements and return these values to
the main program for the further use in main
program such as to compute changes in state
variable vector to complete the power flow solution.

6 RESULTS AND DICUSSIONS

The five bus test system shown in Fig.9 is
simulated to solve the power flow problem in the
environment of MATLAB using both type of
differentiation techniques, namely Finite
Differentiation and Automatic Differentiation.

The results of both presented as shown below.

XVII International Symposium on High Voltage Engineering, Hannover, Germany, August 22-26, 2011

TABLE 1: Nodal Voltages and Angles computed
using Finite Differentiation

TABLE 2:Nodal Voltages and Angles with

Algorithmic Differentiation

 TABLE 3:Error values (of Voltages and Angles)
corrected by Algorithmic Differentiation, that due
to Finite-Differentiation Approximation

From the above results it is observed that
computation of the Jacobians as well as the nodal
voltages, phase angles, real powers and reactive
powers of the load flow solution using the Finite
Differentiation is tedious and error prone and the
output values obtained are approximate values.
Alternatively computing the Jacobians, nodal
voltages, phase angles, real powers and reactive
powers of the load flow solution using the
Algorithmic Differentiation is very simple, efficient
and gives the very accurate, errorless solution up to
the precision of 1e-08.
Table 1 and Table 2 gives the computation of nodal
voltages and phase angles of test system using
Finite and Algorithmic Differentiation respectively.
And Table 3 gives the error caused while
computation of nodal voltages and phase angles by

the Finite Differentiation approximation and that is
corrected by the Algorithmic Differentiation.

7 CONCLUSIONS

In this paper it has been presented that
computation of the first order derivatives (or
Jacobian elements) of power flow problem using
Automatic Differentiation technique is simpler,
flexible and accurate over the traditional Finite
Differentiation technique. It has been observed that
computational cost and time is very less due to the
decomposition of complex expressions into simple
terms.

A model has been formulated for a standard five
bus power system network then the technique of
Automatic Differentiation implemented and tested
using that system and the effectiveness of this
technique is demonstrated.

8 ACKNOWLEDGMENTS

The authors are thankful to the managements of
Sree Chaitanya College of Engineering and JNT
University, Hyderabad, for providing facilities to
publish this work.

9 REFERENCES

[1] P.Kundur, Power System Stability and Control,
(McGraw-Hill, 1994).

[2] Stott, Review of Load-flow Calculation
Methods, IEEE Proceedings vol 62 pp 916–
929, July 1974.

[3] Tinney, W.F., Hart, Power Flow Solution by
Newton’s Method, IEEE Trans. Power
Apparatus and Systems PAS-86(11) 1449–
1460, 1967.

[4] Richard D. Neidinger , Introduction to
Automatic Differentiation and MATLAB
Object-Oriented Programming, SIAM REVIEW,
Vol. 52, No. 3, pp. 000–000 , 2010.

[5] G.Corliss, C.Faure, A.Griewank, and
U.Naumann, Automatic Differentiation of
Algorithms: From Simulation to Optimization,
(Springer, 2002).

[6] T. F. Coleman and A. Verma. ADMAT: An
Automatic Differentiation Toolbox for MATLAB.
(Technical report, Computer Science
Department, Cornell University, 1998).

NODAL
VOLTA
GE

BUS 1

BUS 2

BUS 3

BUS 4

BUS 5

MAGNI
TUDE(
P.U)

1.06000
000

1.0007
8543

0.9872
3258

0.9841
6512

0.9717
0595

PHASE
ANGLE
(DEG)

0.00000
000

-
2.0612
0059

-
4.6367
9114

-
4.9570
9914

-
5.7649
2831

NODAL
VOLTA
GE

BUS 1

BUS 2

BUS 3

BUS 4

BUS 5

MAGNI
TUDE(
P.U)

1.0600
0000

1.000
76212

0.962
11246

0.971
12101

0.960
20412

PHASE
ANGLE
(DEG)

0.0000
0000

-
2.069
43860

-
4.689
89556

-
4.968
90086

-
5.785
06945

NODAL
VOLTA
GE

BUS 1

BUS
2

BUS 3

BUS 4

BUS 5

MAGNI
TUDE(
P.U)

0.00000
000

0.000
02331

0.025
12012

0.013
04411

0.0115
0183

PHASE
ANGLE
(DEG)

0.00000
000

0.008
23801

0.053
10442

0.011
80172

0.0201
4114

XVII International Symposium on High Voltage Engineering, Hannover, Germany, August 22-26, 2011

