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Abstract:  For a linear dielectric, the real and imaginary parts of the response are related 
through Kramers-Kroing relationship. This paper describes a numerical method for 
obtaining the Kramers-Kroing transform. The method has been applied to data measured 
experimentally in the laboratory on Epoxy Bonded Mica Tape, Electrical grade Capacitor 
paper and the insulation system of a 6.6kV rotating machine. The numerical method has 
been successfully used to check the consistency of the dielectric response data and 
isolate the dc conduction component at low frequencies. 

 
1 INTRODUCTION 

The real and imaginary parts of the dielectric 
response of a linear dielectric related to each other 
through the Kramers-Kroing relationship because 
they are derived from same exciting function [1,2]. 
These relationships are derived from the Hilbert’s 
integral transforms. The relationships can thus be 
used for obtaining the data pertaining to the real 
part of the ideal dielectric response when only the 
imaginary part is available or vice versa. The case 
when the response data of a linear dielectric are 
not Kramers-Kroing compatible, when a strong dc 
conduction component is present in addition to the 
dipolar processes. This kind of response is found 
in many dipolar systems, especially at low 
frequencies and high temperatures. The presence 
of a dc conduction component is characterised by 
a sharp increase in the imaginary component, 
while the real part remains constant.   

If 'ε  and "ε are the real and imaginary parts of 
complex permittivity, then at a particular radian 
frequency 0ω the Kramers-Kroing relationships can 
be expressed as:  
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0( ( ))H ε ω  and '
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Hilbert’s transforms of  "ε  and 'ε  respectively. In 
the above equations the principal value of the 
integral is considered, excluding the point of 
singularity. This means that if the values of the real 
part of the permittivity over a wide range of 

frequencies is known, then it is possible to obtain 
the imaginary part over the same range and vice 
versa. In practice, the limits of the integral in 
Equations (1) and (2) are limited to a finite range of 
measured frequencies. An important consequence 
of the integrals is their evaluation for zero 
frequency [2]. 
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sε  is the value of the permittivity at zero frequency 

and ε∞ the value at very high frequencies. This 
relates the polarization increment for a given 
polarisation mechanism to the loss curve plotted 
against the logarithm of the given frequency. This 
immediately shows that a mechanism leading to 
stronger polarisation invariably gives rise to higher 
losses. 

2  EVALUATION OF THE INTEGRAL 

The principal value of the integral is evaluated by 
excluding a small region of radius r around the 
singular point oω ω= , where the integral just  
begins to diverge and the boundaries are 
approached equally fast from both sides. From 
equations (1) and (2), it is evident that the real or 
imaginary part of the permittivity at any 
frequency, oω , depends on the value of the other 
at all frequencies with the significance of the value 

decreasing as 
2 2

oω ω− becomes larger. When 

oω ω≤ , the function inside the integral and the 
integral itself tends to a constant value, while for   
ω ≥ oω ,the integral almost tends to zero. This fact 
is exploited while performing a numerical transform 
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over a finite range of frequencies. Since the real 
part of the permittivity is a continuous function of 
the frequency and remains positive over the range 
of frequencies considered, the integrand is 
negative, below the frequency of interest oω , 
(which  incidentally becomes the point of 
singularity ) and positive above oω . The integrand 
thus has a sign change around the singularity. The 
integral is split up into two halves, one 
corresponding to the region below oω and the 

other above oω . A region of radius r around oω  
where the integral just begins to diverge is 
excluded and this numerical integration is carried 
out by using Newton-Cotes method [3]. The region 

o rω −  and o rω +  is evaluated by integrating 
equation (1) by parts since the derivatives of 

"( )ε ω in this region are bounded. Up to 3 
significant terms are considered in the repeated 
integration. The principal value of the integral is 
thus evaluated as  
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 1ω and 2ω are the lowest and highest available 
frequencies respectively. The value of r is chosen 
as the point where the function just begins to 
diverge. Figure 1 depicts the variation of the 
integrand with ω . Equal halves are considered on 
either side of 0ω . The accuracy of the results will 
be determined by the highest and lowest frequency 
up to which the data is available and the number of 
terms used in the repeated integration by parts. In 
order to make fullest possible use of the finite 
range of measured frequencies, the measured 
results are extrapolated by one decade on either 
end. A similar procedure is adopted for obtaining 
the Kramers-Kroing transform of the real part to 
obtain the imaginary part of the permittivity.  

 

 

Figure 1: Variation of Integrand (equation (4)) 

2.1 Example: Ideal Case  

Consider the Havriliak-Negami model:  
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The real part of the data is computed with 5 points 
per decade in the range ω = 10 rad/sec to ω = 
100000 rad/sec. Using the Kramers-Kroing 
transform the imaginary part is derived. The data is 
first of all extrapolated by one decade on either 
side of the spectrum, i.e., upto 1rad/sec on the low 
frequency side and upto 1000000 rad/sec on the 
high frequency side. Consider a point oω = 500 
rad/sec. A small region of radius r in the 
neighbourhood in the region of singularity is cut out 

such that 0 0

0 0

r
r

ω ω
ω ω

+=−  that is the points 

0 rω +  and 0 rω −  are symmetrically located on a 

logarithmic scale around 0ω . Taking this ratio as 
0.8, for a frequency of 500 rad/sec., the upper limit 
of the first integral of equation (4) is thus 400 
rad/sec and the lower limit of the third integral is 
425 rad/sec. The region between 1 rad/sec and 
400 rad/sec and that between 625 rad/sec to 
1000000 is integrated by using the Newton cotes 
formula. The region between 400 to 625 rad/sec 
which contains the point of singularity is integrated 
by parts considering the first three terms of the 
repeated integration. The integral is thus defined 
as  
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The value of the integral at 500 Hz is thus 0.97. In 

XVII International Symposium on High Voltage Engineering, Hannover, Germany, August 22-26, 2011



this case ''ε is available at 20 discrete points 
between ω = 10 to 1000000 rad/sec. While 
evaluating the integral values of 'ε at points other 
than the measured frequencies are required, for 
this a cubic spline interpolation method is used to 
generate data between the measured values.. 
Table 1 lists the values of ''ε  obtained by using the 
Kramers-Kroing transform. The other transform for 
obtaining real part of the data using the imaginary 
part is carried out in a similar way. 

Table-1 Kramers-Kroing Transforms of the Ideal 
System 

ω rad/sec. ''ε  '
( ( ))H ε ω  'ε ε− ∞

"
( ( ))H ε ω  

10 0.0453 0.0156 14.98 14.49
50 0.1633 0.1324 14.95 14.35
100 0.2826 0.2283 14.90 14.25
500 0.9824 0.9742 14.59 13.92
1000 1.6314 1.6010 14.22 13.89
5000 4.146 4.0616 11.45 11.05
10000 4.9173 4.7601 8.95 8.09
50000 3.5696 3.0464 3.36 2.86
100000 2.5515 2.2004 2.06 1.72
The above table indicates that the accuracy of the 
estimates come down drastically at the edge of the 
frequency spectrum. The estimates are best when 
adequate number of data points are available on 
either side of the frequency of interest.  

2.2 Experimental Data 

A) Epoxy Mica Tape: The complex permittivity of 
0.05mm thick Epoxy bonded Mica Tape at room 
temperature conditions was measured over a 
frequency range of 10 Hz to 10 kHZ with 3 points 
per decade using a Frequency Response Analyser 
in conjunction with an Electrochemical Interface 
[4,5]. The response characteristics so measured 
are shown in Figures 2a and  2b respectively. The 
Kramers-Kroing compatibility of this data is 
checked by the extrapolating the data by one 
decade on either side of the spectrum to improve 
the accuracy of the transform on edges of the 
frequency spectrum. The Kramers-Kroing 
transforms for the real and imaginary parts are 
shown in Table 2 and they show a reasonably 
good agreement with the experimentally measured 
values in the region 10 Hz-10 kHz. 

 

Figure 2a: Variation of ε’ with Radian Frequency 
for Epoxy Bonded Mica 

 

Figure 2b: Variation of ε” with Radian Frequency 
for Epoxy Bonded Mica Tape 

Table-2 Kramers-Kroing Compatibility for Epoxy 
Mica Tape 

ω rad/sec. ''ε * '
( ( ))H ε ω  'ε ε− ∞ * "

( (H ε ω

1 0.0003 0.0015 14.98 14.79
10 0.0031 0.0021 14.95 14.69
100 0.0224 0.0189 14.90 14.58
1000 0.0866 0.0845 14.59 14.32
10000 0.0706 0.0631 14.22 13.99
100000 0.0249 0.0322 11.45 10.65
* Experimentally measured 

B) Capacitor Paper: The permittivity characteristics 
of 0.04mm thick capacitor paper are measured at 
room temperature in the region 25 Hz to 100 kHz 
with 3 points per decade are shown in Figures 3(a) 
and Figure 3(b) respectively. From the graphs, it is 
evident that the slope at the low frequency end is 
negative and increases with respect to frequency, 
then begins to decrease and finally tends to a 
constant value. The negative slope indicates the 
presence of a dc component in the dielectric 
response. It is important to observe that this 
crosses the zero point twice. The first point where 
it crosses the zero corresponds to the point where 
the dc component just begins to dominate and the 
second point corresponds to the loss peak 
frequency. Comparing the variation of the real part 
of the permittivity and the imaginary part of the 
permittivity with frequency, it is seen that while the 
loss component shows a sharp increase with 
decrease in frequency, the real part is more or less 
constant. This confirms the presence of a dc 
conduction component.  

 

Figure 3a: Variation of ε’ with Radian Frequency 
for Capacitor Paper 

 

Figure 3b: Variation of ε” with Radian Frequency 
for Capacitor Paper 
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The Kramers- Kroing transform of the real part of 
the permittivity is obtained to give the imaginary 
part. This is subtracted from the measured "ε to 
give the estimated conductive part.  Since the 
estimates of the actual dielectric component are  
lower than that actually expected, the actual 
conductive component will be little higher.  A graph 
of the variation of the conductive part with 
frequency is shown in Figure 3c. The conductive 
part shows a drastic decrease with increase in 
frequency and becomes negligible beyond 150 Hz.  

 

Figure 3c: Variation of dc conductive portion with 
Radian Frequency for Capacitor Paper 

C) Insulation System of a 6.6kV rotating machine: 
In the case of a practical insulation system,  the 
geometry of the dielectric is complex it is difficult to 
arrive at the complex permittivity.  The dielectric 
loss tangent tanδ  which is independent of the 
geometry is considered.  The loss tangent is the 

ratio of 
"

'
C

C , where "C is the imaginary part of 

the impedance and 'C the real part. The 
impedance spectra are also measured using the 
Frequency Response Analyser [4,5].    Such 
spectra can be of vital use in diagnosing the 
condition of the insulation. The complex 
impeadnce characteristics for a rotating machine 
coil using epoxy bonded mica resin as the main 
wall insulation with a geometry specified in Figure 
4 is measured at room temperature between 1Hz 
to 100 Khz with 5 points/decade. The variation of 
the real and imaginary part of the response is 
shown in Figure 5. The presence of a dc 
conduction component is evident. Using the same 
technique outlined above the conductive portion is 
obtained by using the Kramers-Kroing transform.  

 

 

Figure 4: Cross section of  main insulation of a 6.6 
kV rotating machine coil 

 

Figure 5a: Variation of ε’ with Radian Frequency 
for Rotating Machine Coil Insulation 

 

Figure 5b: Variation of ε” with Radian Frequency 
for Rotating Machine Coil Insulation   

In this case too, the conductive part is high at low 
frequencies and tapers off as the frequency 
increases. 

3 CONCLUSION 

This paper has proposed a numerical method for 
evaluating the Kramers-Kroing integral. The 
method has been successfully applied in extracting 
the real part of the response spectrum when the 
imaginary part is available and vice versa to the 
experimentally measured data in the laboratory. 
The accuracy of the estimates are best around the 
central region of the measured frequency 
spectrum. Whenever, a strong   dc conduction 
component is present, using the Kramers-Kroing 
transform it is possible to separate out the 
conductive portion from the overall portion of the 
dielectric response. The degree and deviation from 
the Kramers-Kroing compatibility can serve as a 
useful aid in dielectric diagnosis.  
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