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Abstract: Corona loss in transmission lines is caused by the partial breakdown of air
around the conductor and the ion flow of charged particles away from the conductor. The
manifestation of corona and the impact of corona loss varies according to electrode geom-
etry, magnitude and distribution of the electric field and composition of the gas. As such
it is important to account for corona in designing transmission lines as it has an impact on
number of factors including: conductor size and rating, conductor bundles, and the selec-
tion of insulation. The object of the author’s research is to investigate and model corona
and in particular corona loss. The paper primarily identifies relevant available research,
modelling techniques and published data with which the development of a corona model
can be based and compared. In this case the 2 identified methods of modelling are the flux
corrected transport algorithm and the particle mesh method. These 2 methods allows for
a dynamic solution and are applicable to modelling of discharges or ion flow in a gaseous
system. A basic solution of the particle mesh is implemented, however the solution is inac-
curate and unstable for a number of reasons.

1 INTRODUCTION

The phenomena of corona in high voltage transmis-
sion line has been the interest of designers for a
number of years, as it has an impact on the design
of transmission lines, notably in the form of power
(or corona) loss, audible noise, and electromagnetic
and radio interference. There have been numer-
ous studies on the impact of corona on transmission
lines, including the development of empirical rela-
tionships based on measured data and more theo-
retical solutions based on the physical processes of
the gas discharge phenomena. An often notable ab-
sence of corona theory for HVDC transmission lines
is the inclusion of time-varying space charge, which,
although highly complex, is important for power and
energy loss, electromagnetic and radio interference.

The paper identifies some of the research and
current theories for the physical processes of
corona discharges and proposes a method to
investigate the corona discharge process starting
from the kinetic theory of gases through to the im-
plementation of the ionization and corona theories
for HVDC transmission lines. The ultimate goal
of the research is to make use of the presently
accepted theories and with the aid of measured
data, particularly from coaxial corona cages, to
develop an engineering solution for corona loss that
can be applied to both unipolar and bipolar HVDC
transmission lines.

2 HVDC CORONA

Under the influence of a electric field, electrons are
accelerated in the direction of the field. These elec-
trons may gain enough energy that on collision with
another particle another electron may be released,
these free electrons are subsequently accelerated
and may release further electrons, resulting in an
electron avalanche. In a uniform field when an elec-
tron avalanche becomes self sustaining and bridges
a gap, breakdown occurs. In a non-uniform field,
where the electric field intensity has a greater mag-
nitude immediately surrounding the conductor and a
lesser magnitude away from the conductor, a partial
breakdown or corona may occur [1, 2].

For a non-uniform field, the avalanche becomes
self-sustaining when [1, 2]:

n = n0γe

∫ d

0
(α−η)dx (1)

Where:
α = Ionization coefficient
η = Attachment coefficient
γ = Secondary ionization coefficient

2.1 Negative Corona

For the cylindrical conductor with an applied high
voltage under negative polarity as illustrated in fig-
ure 1. A nonuniform electric field distribution ex-
ists in the gap, with the highest value at the con-
ductor surface. At a high enough voltage the elec-
tric field at the surface of the conductor becomes
sufficiently high to initialise ionization. Naturally
created free electrons initiate electron avalanches,
which progress to a distance from the conductor

XVII International Symposium on High Voltage Engineering, Hannover, Germany, August 22-26, 2011



where ionization and attachment are equal. Beyond
the boundary all electrons attach to form negative
ions. The impact of the positive ions on the con-
ductor and photoionization produce the secondary
ionization that causes a self-sustaining discharge or
corona [2].

Following the initial electron avalanche, two ion
space charge clouds (illustrated in figure 2) are
formed from the positive and negative ions, mov-
ing towards the conductor and ground respectively.
The space charge increase the electric field closer
to the conductor and decreases the field away
from the conductor, resulting in subsequent elec-
tron avalanches due to the higher field, but a shorter
travelling distance for the avalanche [2].

Three modes of corona exist depending on the how
the resultant space charge affects the electric field
is modified, these include Trichel Streamer, Neg-
ative Glow and Negative Streamer. Each mode
has distinct electrical, physical and visual manifes-
tations [2].
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Figure 1: Negative Corona
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Figure 2: Negative Corona

2.2 Positive Corona

In the case of positive corona the electron avalanche
is initiated by natural processes in the air at a bound-
ary, where the ionization constant is greater than

zero (illustrated in figure 3). The avalanche devel-
ops towards the conductor in the increasing electric
field. The highest field-intensified ionization activity
occurs near the conductor surface [2].

Secondary ionization occurs exclusively through
photo-ionization. Clouds of space charge are
formed by the various molecules in the gas, where
most of the negative ions are created away from the
conductor as electrons are neutralized closer to the
conductor. These space charge clouds modify the
electric field and the discharge development leading
to various modes of corona including Burst Corona,
Onset Streamer, Positive Corona and Breakdown
Streamer [2].
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Figure 3: Positive Corona

2.3 AC and DC Corona

In investigating corona loss, coaxial corona cages
are a useful tool in measuring the loss due to the
alternating field of an AC conductor as the corona
developed space charge tends to stay in the vicinity
of the conductor. In direct current the space charge
created by corona drifts away from the conductor fill-
ing the entire inter-electrode space. Coaxial corona
cages are as such not useful in measuring corona
loss on a DC system and applying this to other con-
figurations such as overhead transmission lines.

3 CORONA MODELLING

Modelling techniques include both steady state so-
lutions and time domain modelling, which gener-
ally revolve around the coupled solution of Poisson’s
equation and the continuity equation. The different
techniques are discussed below.

3.1 Steady State Solutions

For corona loss involves the solution of Poisson’s
equation and the charge continuity equation, which
are solved simultaneously by iterating through vari-
ous values of space charge ρ until the solutions of
the coupled equations converge. Common assump-
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tions when modelling include [3–7]:

1. The mobility of ions is constant (independent of
the field intensity and the drift time from gener-
ation),

2. Diffusion of ions is neglected,
3. The space charge affects only the magnitude

but not the direction of the electric field. Known
as Deutsch’s assumption.

4. The ionization zone is neglected.
5. The electric field at the surface of the conduc-

tor remains constant at the onset voltage for
corona. Known as Kapstov’s Assumption.

The first assumption regarding the mobility of the
ions is an averaged quantity that takes account of all
the various ions that make up the gas. A constant
or average mobility is used to simplify calculations.
The mobility is independent of electric field, however
this may not be the case in the ionization region as
the successive avalanches are contributing to signif-
icantly to the thermal energy within the region which
will in turn alter the kinetic energy of the gas [8].

Regarding the second assumption, Jones illustrates
that the contribution of the diffusion to the velocity of
ionic flow will be substantially smaller than the drift
velocity and as such it is often neglected [8, 9].

The third assumption is used to transform two di-
mensional problems into one dimensional problems,
by assuming that the space charge affects the mag-
nitude of the electric field and not the direction
(known as Deutch’s assumption) [6]. It has been ap-
plied to cases for the solution of the steady state ion
drift problem [5, 10]. In the case of the symmetrical
coaxial arrangement, this assumption is not appli-
cable as the Laplacian and Poission’s field lines are
the same.

The fourth assumption is used to simplify the solu-
tion as the ionization zone is generally significantly
smaller than the ion drift zone, however in a time
based solution this would provide a boundary con-
dition for the production of ions from the corona dis-
charge.

The fifth assumption is often used to simplify the so-
lution for the ion drift problem and provide a bound-
ary condition in solving the problem, however is
known to be incorrect as the electric field will be
altered by the production of space charge [11–14].
Additionally it cannot be constant in time as corona
itself has a non constant nature, the space charge
effect on the drift and plasma motion is shown in
the solutions to the transport algorithm by Morrow
and Lowke [15]. The alteration the electric field by a
coronating conductor has been shown through mea-
surements by Waters et al. [13]. Takuma et al.
moved away from this assumption by using a con-
stant charge density on the surface of the conduc-

tor [4].

3.2 Flux Corrected Transport Algorithm

Morrow et al. proposed the use of the flux corrected
transport algorithm (initially described by Boris and
Book) as a numerical solution to the flow of charged
particles in a gaseous system [16–19]. Morrow and
Lowke applied the algorithm for the modelling of
a streamer [18]. The continuity equations can be
rewritten for electrons, negative and positive ions in
1 dimension are given by:

∂Ne
∂t

= S +Neα|~ve| −Neη|~ve| −NeNpβ

− ∂(Ne~ve)

∂z
+

∂

∂z

(
D
∂Ne
∂z

)
(2)

∂Ne
∂t

= S +Neα|~ve| −NeNpβ −NnNpβ

− ∂(Np~vp)

∂z
(3)

∂Nn
∂t

= Neη|~ve| −NnNpβ

− ∂(Nn~vn)

∂z
(4)

Where:
Ne/n/p = Densities of electrons, negative ions

and positive ions
~ve/n/p = Velocities of electrons, negative ions

and positive ions [m.s−1]
S = Photoionization term
β = Recombination coefficient
D = Diffusion coefficient

Poisson’s equation can be rewritten as:

∇2φ = −e
−

ε0
(Np +Nn +Ne) (5)

Morrow et al. have used numerical methods includ-
ing Finite Difference and Finite Elements Methods
to solve the equations [18, 20].

3.3 Particle Mesh Method

The particle in cell technique represents numerous
physical particles as a super particle. These super
particles are moved and tracked in space from a La-
grangian point of view, weighted to a grid to solve
for Poisson’s equation, weighted to a particle and
the cycle is repeated [21]. The technique has been
applied to a number of gas discharge solutions [22–
25].

3.3.1 Particle mover The particle mover uses the
equations of motion to move the superparticle:

d~x

dt
= ~v (6)

d~v

dt
=

q

m
~E (7)
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In a discrete system these can be solve by explicit
methods such as Euler 1st order method or the
leapfrog 2nd order method, or a 4th order method
such as Rugga-Kutta. The Euler method is the
fastest method, but it is unstable under certain con-
ditions, the leapfrog method is, however, more sta-
ble. The method is simple to implement and uses
half time steps to calculate the position.

The solution of the equations of motion do not ac-
count for collisions with the background gas. Monte
Carlo methods are the most suitable [21].

3.3.2 Particle and field weighting The simplest
implementation of weighting is the zero order
weighting of assigning all the charge to the nearest
grid point (NGP). The scheme produces very noisy
interpolation. A first order linear weighting scheme
know as particle in cell or cloud in cell attempts to
reduce the noisy interpolation by partially assigning
the charge of the particles to grid points.

A third method, which is implemented in this pa-
per, is to use a constant charge and have a variable
area, this method is, however, prone to instabilities,
errors and slower calculation times. In addition the
technique is only implementable for a single charge
species. The suitability will be discussed further on
in the paper.

3.3.3 Accuracy, stability and noise There are a
number of conditions that need to be satisfied in or-
der for the solution to be accurate, stable and rela-
tively noise free. As the super particles are repre-
sentative of a greater number of physical particles,
the greater the number of super particles the less
noisy the solution.

Courant-Friedrichs-Lewy condition arises when
solving an explicit algorithm [18]:

∆t <
∆x

We
(8)

Debye length is a measure of the Debye shielding
cloud that a charged particle carries around itself.
Effectively it is a measure of how the charged parti-
cles will interact with each other [26]:

λD =

√
ε0kBT

nq2e
(9)

Where:
ε0 = Permittivity of free space
kB = Boltzmann’s constant
n = Electron density
qe = Electron charge

Particle oscillations, plasma frequency or Langmuir
waves are the oscillations of the charged parti-

cles [26]:

wp =

√
nq2e
ε0me

(10)

Where:
me = Electron mass

The velocity of the electron can be related to the
temperature [26]:

ve =

√
kBTe
me

(11)

giving
wp =

ve
λD

(12)

For accuracy and stability:

∆x < 3.4λD (13)

∆t < 2w−1
p (14)

4 MODEL VALIDATION

4.1 Model Setup

Morrow and Lowke implemented the drift and diffu-
sion terms of equations 2 to 4 to study the effects of
space-charge on electron and plasma motion in ni-
trogen. The plasma and system parameters include
[18]:

• a pressure of 12 kPa,
• a temperature of 293 K,
• two electrodes 3cm apart, with the cathode at 0

cm and anode at 3 cm,
• a uniform electric field of -5.58 kV/cm,
• grid spacing, ∆x, of less than 0.03 cm,
• time step, ∆t, of 5×10−10 s

The electron density is described by a Gaussian dis-
tribution given by [18]:

Ne = N0e
−( x−1.5

0.25 )
2

(15)

The electron velocity is given by [15]:

|We| = 9.56× 1021E/N (16)

Where:
N = Molecular concentration of the gas [cm−3]
E = Electric field [V/cm]

There are a number of differences in the implemen-
tation, these include:

• Diffusion is ignored
• The solution of the electric field required bound-

ary conditions on the electrodes, which alter the
electric field across the gap and alter the move-
ment of particles.
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Figure 4: Space charge solution over time with
N0 = 1× 106 and Eapplied = 5.58 kV/cm
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Figure 5: Space charge solution over time with
N0 = 1× 1010 and Eapplied = 0 kV/cm
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Figure 6: Space charge solution over time with
N0 = 1× 1010 and Eapplied = 5.58 kV/cm

Table 1: Parameters for method validation
Parameter Ne = 1× 106 Ne = 1× 1010

Grid spacing, ∆x 0.0297 0.138

4.2 Results

5 DISCUSSION

Figure 4 illustrates the case with N0 = 1 × 106

where the applied electric field is significantly dom-
inant over the electric field produced by the elec-
tron space charge. The results are similar to those
produced by Morrow and Lowke. The implemented
method is suitable as the original Gaussian distribu-
tion does not alter and as such the resolution and
the grid space of the problem remain the same and
do not exceed the stability and accuracy criteria.

Figure 5 illustrates the case with N0 = 1 × 1010

where there is no applied electric field. In this case
the electric field of the space charge has the effect
of dispersing the electrons away from the center;
the distribution remains Gaussian but has a smaller
peak and fills a wider area. The higher the electric
field the larger the velocity and subsequent move-
ment, due the space charge affected the electric
field in a non-uniform manner; larger grid sizes may
result in certain areas leading to inaccuracies.

Figure 6 illustrates the case with N0 = 1 × 1010

where the applied electric field is not dominant. In
this case the electric field of the space charge has
the effect of dispersing the electrons away from the
centre and moving them in the direction of the field,
the distribution not longer remains Gaussian and
also has a smaller peak and fills a wider area.

The figures correspond in shape but not in mag-
nitude to the results of Morrow and Lowke, this is
due to the solution of Poisson’s equation, where the
electrodes required a bounded space to be solved.

The higher the electric field the larger the velocity
and subsequent movement, due the space charge
affected the electric field in a non-uniform manner;
larger grid sizes will result (as shown in Table 1)
leading to the solution exceeding the stability and
accuracy limits shown previously.

6 CONCLUSION

The paper presented a discussion on modelling of
corona, and presented some models that are useful.

The paper additionally presented a model, of which
the implementation is not suitable for modelling of
discharges and subsequently HVDC corona. The
various error and stability criteria with which the
model should comply are identified.

Future work includes:

• Correction of the model and validation against
published results.
• Application to a non-uniform 1 dimensional

field.
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• Application to a non-uniform 2 dimensional
field.
• Validation against 1 coaxial corona cage.
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