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Abstract: The spacial energy flow distribution on three–phase high–voltage lines was analyzed

using the Poynting vector. Thereby it appeared that in spite of reactive loads there are regions

in space — dependent on whether the loads are balanced or not — where the time averaged

Poynting vector does not vanish. That means that in these regions in case of pure reactive loads

active power is transmitted.

1 INTRODUCTION

It is the intention of this paper to answer the question

how in detail energy transfer takes place along a three–

phase high-voltage power line. The general way to cal-

culate the active power transportation along a power

line with lines numbered by L1, L2 and L3 is quite sim-

ple and well known already for undergraduate students:

Using the delta voltages U12, U23 and U31 (root-mean-

square values) as well as the (in general: complex)

delta-loads Y 12, Y 23 and Y 31, the active power can be

calculated by

P = U2
12Re{Y 12} + U2

23Re{Y 23} + U2
31Re{Y 31} (1)

neglecting all line losses. In addition one can see, if

all loads are pure reactive, no active power is transmit-

ted. But using (1) one cannot see at all how the active

power transportation will take place in detail.

To investigate the latter, the most suitable and powerful

quantity is the Poynting vector S(r, t) which was intro-

duced in 1884 by John Henry Poynting. It describes the

energy flow with respect of magnitude and direction of

an electromagnetic field in terms of a power density and

is defined to be (cf. e.g. [1])

S(r, t) = E(r, t) × H(r, t) . (2)

Herein the vectors E and H represent the electric as

well as the magnetic field strength, the vector r is the

position in space and t is the time.

For the calculation of the power transmitted through an

arbitrary surface AS , we have to integrate S(r, t) over

this surface, i.e.
∫

AS
S(r, t) d A. Applied to straight

power lines, we obtain the (instantaneous) value of the

overall transmitted power p(t) by integration of S(r, t)

over an infinite cross–sectional area perpendicular to

the power lines,

p(t) =

∫ +∞

−∞

∫ +∞

−∞

S(x, y, t)(ex × ey) dx dy . (3)

Herein ex and ey are the unit vectors in x– and y–

direction as well. What we finally need is the trans-

mitted active power P which is the time averaged value

of p(t), indicated by an overline, i.e.

P = p(t) =
1

T

∫ T

0

p(t) dt

=

∫ +∞

−∞

∫ +∞

−∞

S(x, y, t)(ex × ey) dx dy .

(4)

The description of energy transmission using S some-

times results in seemingly paradoxical results. For

example, since the magnitudes of E and H outside

the conductors of a power line are in general much

larger than inside the conductors (e.g. there is abso-

lutely no electric field inside perfect conducting mate-

rial) we have to conclude that energy transport takes

place nearly completely outside (!) the conductors.

In chapter 2 we will derive formulae for calculating the

Poynting vector in case of a three–phase line and we

will discuss the result. In the scope of this discussion

we will come to the conclusion, that in spite of pure

reactive loads nevertheless the transmission of active

power is possible.

To illustrate this surprising result, in chapter 3 this effect

will be demonstrated for a real three phase line system

and discussed in more detail in chapter 4. The last

chapter is a conclusion.

2 ENERGY TRANSFER ON THREE–PHASE LINES

We consider a three–phase system consisting of three

conductors of an overhead line. The three conductors

are arranged in form of an equilateral triangle as de-

picted in fig. 1. The distances l between the conductors

are 3,6 m, the line diameters d are 21,8 mm, and the

distance h of the center of the triangle to ground is 18,5

m. The maximum rms–value of the steady current for
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Fig. 1 Three–phase system of an overhead line [2]

each conductor is 645 A, and we assume a delta rms–

voltage of U = 110 kV i.e. a rms–voltage to neutral of

U0 = 64 kV.

To calculate the Poynting vector, we have to calculate

the electric and magnetic fields. The general procedure

is depicted in fig. 2: Starting with the given geometrical

data (cf. fig. 1), the material data (ǫ = ǫ0, µ = µ0 in

the whole space), the voltages (e.g. voltages to neutral

U1 = U0 e−j30◦
, U2 = U0 e−j150◦

and U3 = U0 ej90◦
)

Geometry and

Material Data

Voltages

(to Neutral)
Loads

Capacitances Line-Charges Line-Currents

Electric Fields Magnetic Fields

Poynting Vector

Fig. 2 General calculation procedure

and the loads (e.g. Y 12, Y 23, Y 31), one can calculate

capacitances, line–charges q ′
i (t) per unit length (p.u.l.)

and line–currents ik(t), the electric and magnetic fields

and finally the Poynting vector.

q'3(t)

x

y

P(x,y)

r1

r3

r2

rr  -
 r 3

i3(t)

q'2(t)

i2(t)

q'1(t)

i1(t)

Fig. 3 System of three

lines represented by

charges and currents

(image charges are not

depicted)

The resulting electric as well as magnetic field at an ar-

bitrary point P(x, y), described by the vectors r and r1

to r3 (fig. 3), is then a linear superposition of the indi-

vidual fields of each conductor (plus the electric fields

of image charges), i.e.

E(P, t) =

3
∑

i=1

Ei (P, t) + Ei img(P, t) (5)

and

H(P, t) =

3
∑

k=1

Hk(P, t) , (6)

where the mentioned individual fields are simply the

electric fields of the straight line charges q ′
i (t) p.u.l. as

well as the magnetic fields of the line currents ik(t) with

e.g. i, k = 1, 2, 3 for the depicted three–phase system

(c.f. fig. 3).

Assuming that q ′
i (t) and ik(t) are sinusoidal functions

with respect to time, i.e.

q ′
i (t) = q̂ ′

i cos(ωt + ϕi ) (7)

ik(t) = îk cos(ωt + ψk), i, k = 1 . . .3 , (8)

with ω = angular frequency of charges and currents,

then for the three–phase system of fig. 3 we obtain

for every single point P in space rotating electric and

magnetic field vectors, describing elliptic curves as de-

picted in fig. 4. Herein the angular velocities ωE (P, t)

and ωH (P, t) of the field vectors E(P, t) and H(P, t)

are in general not only different from each other (and

sometimes contra-rotating), but also functions of time,

depending on the position P in space and on the val-

ues of the loads Y 12, Y 23 and Y 31, respectively. As

x

y

z

ωH(P,t)

E(P,t)

H(P,t)

S(P,t)

ωE(P,t)

ex

ey

ez

Fig. 4 Field vectors E(P, t) and H(P, t), rotating in the x–

y–plane, and Poynting vector S(P, t) = Sz(P, t)ez. ωE (P, t)

and ωH (P, t) are the angular velocities of the field vectors

with in general ωE (P, t) 6= ωH (P, t).

an example: If Êx(P) and Êy(P) are the respective

peak-values of the x– and y–components of E(P, t),

and ϕE x (P) and ϕE y(P) are the corresponding phase

angles, then the angular velocity ωE (P, t) equals

ωE (P, t) = ω

Êx(P)Êy(P)
sin

(

ϕE y(P)−ϕE x (P)
)

cos2
(

ωt+ϕE y(P)
)

Êy(P)2 + Êx(P)2
cos2(ωt+ϕE x (P))
cos

(

ωt+ϕE y(P)
)

, (9)
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similarly for ωH (P, t). Figure 5 shows a typical curve

shape of ωE (P, t). The angular frequency ω is the

tTT/2T/4 3T/40

ωE(P,t)

ωEmax
(P)

ωEmin
(P)

ω

Fig. 5 Typical curve shape of ωE (P, t). The arithmetic aver-

age of the angular velocity ωE (P, t) (as well as of ωH (P, t))

is equal to the angular frequency ω.

arithmetic average of the angular velocity ωE (P, t) with

respect to time: The two shaded regions in fig. 5 have

the same size.

From (2) together with (5) and (6), for the Poynting vec-

tor we obtain

S(P, t) =

3
∑

i=1

3
∑

k=1
[

Ei (P, t)+ Ei img(P, t)
]

× Hk(P, t)
︸ ︷︷ ︸

=:Sik (P,t)

,
(10)

and since all field–components Ei (P, t), Ei img(P, t)

and Hk(P, t) of E(P, t) and H(P, t) are located

exclusively in the x–y–plane, all parts Sik (P, t) =
[

Ei (P, t) + Ei img(P, t)
]

× Hk(P, t) of S(P, t) must be

vectors in the z–direction, i.e. Sik (P, t) = Sik (P, t) ez ,

where ez is a unit–vector in z–direction (cf. fig. 4).

Taking into consideration (7) and (8) for the calcula-

tion of the electric and magnetic fields and after some

»smart« manipulations of (10), one gets [3]

S(P, t) = −

3
∑

i,k=1

q ′
i (t)ik(t)

4π2ǫ0

(r − ri )(r − rk)

(r − ri )2(r − rk)2
ez .

(11)

For calculation of the energy flow distribution and in

accordance with (4), finally we need the time average

value of S(P, t), i.e.

S(P, t) =
1

T

∫ T

0

3
∑

i,k=1

Sik(P, t) dt ,

in which T is the periodic time with T = 2π
ω

. Due to

the linearity of integration the averaging process can

be reduced to the product terms q ′
i (t)ik(t) in (11), i.e.

S(P, t) =

3
∑

i,k=1

Sik(P, t) ez

= −

3
∑

i,k=1

q ′
i (t)ik(t)

. . .
. . . ez .

(12)

Inserting the right hand terms of (7) and (8) one gets

q ′
i(t)ik(t) = q̂ ′

i îk cos(ωt + ϕi ) cos(ωt + ψk)

=
1

2
q̂ ′

i îk cos(ϕi − ψk)

and finally for Sik (P, t) in (12):

Sik(P, t) = −
q̂ ′

i îk

8π2ǫ0

cos(ϕi − ψk)
(r − ri )(r − rk)

(r − ri )2(r − rk)2

(13)

Taking into consideration all combinations of indexes

ik, (13) represents 32 single equations. But due to the

symmetry of the right–most term in (13) with respect to

the indexes i and k it makes sense to split (13) into two

parts, namely for i = k and i 6= k, and then to combine

the expressions for Sik (P, t) and Ski (P, t),

Sii (P, t) = −
q̂ ′

i îi

8π2ǫ0

cos(ϕi − ψi )

(r − ri )2

Sik (P, t) + Ski (P, t)

= −
1

8π2ǫ0

[

q̂ ′
i îk cos(ϕi − ψk)

+q̂ ′
k îi cos(ϕk − ψi )

] (r − ri )(r − rk)

(r − ri )2(r − rk)2
.

(14)

For the general case of n lines, (14) represents a

maximum of only n + n2−n
2

= n(n+1)
2

equations (If

in the case of n conductors only m < n conduc-

tors are current–carrying, (14) reduces to only m +
[

m2−m
2

+ (n − m)m
]

= m(2n+1−m)
2

equations.).

Together with the first part of (12), equations (14) rep-

resent the general solution for the calculation of the

Poynting vector.

Assuming now again a three–phase system, we dis-

cuss (14) for

a) a complete symmetrical geometry (⇒ all line-

charge magnitudes p.u.l. q̂ ′
i show the identical

value q̂ ′) and

b) a balanced load (⇒ all current magnitudes

îk show the identical value î and the phase-

differences ϕk − ψk show a constant value ϕ)
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leads finally to the results [3]

Sii (P, t) = −
q̂ ′ î

8π2ǫ0

cosϕ

(r − ri )2

Sik (P, t)+ Ski (P, t)

=
q̂ ′ î

8π2ǫ0

cosϕ
(r − ri )(r − rk)

(r − ri )2(r − rk)2
.

(15)

From (15) we see that for a complex load (i.e. cosϕ 6=

0) S(P, t) 6= 0, i.e. active power is transmitted as it

must be. A comparison between calculations using (4)

(together with (15)) and calculations using (1) shows

identical results, as expected. Especially for a pure re-

active load (i.e. ϕ = 90°) S(P, t) disappears for all

points P of space, i.e. no active power is transmitted

as it is well known for reactive loads.

But a very strange result we obtain by examination of

the general case described by (14): If we discuss (14)

in case of a non–symmetrical geometry (i.e. the q̂ ′
i are

different from each other) and/or a non–balanced load

(i.e. the currents are different from each other with re-

spect to magnitude and/or phase behavior), we find out

that even in case of pure reactive loads (!) there are

areas in space where S(P, t) is different from zero! In

terms of physics: There are areas where active power

is transmitted even though the loads are pure reactive!

All this is very general, i.e. it is not restricted to three

conductors only.

We will illustrate and discuss this surprising result in the

next two chapters.

3 ENERGY TRANSFER FOR BALANCED AND

UNBALANCED LOADS

Using the three–phase system given in fig. 1 on page 2,

we will evaluate (14) for different loads. In detail and

as an illustration we consider two cases of balanced

delta loads and one case of unbalanced loads of an

overhead line according fig. 1:

a) Y ik = 10−2

3
�−1 (resistors) ∀ i, k,

b) Y ik = 10−2

3
e−j90◦

�−1 (inductances) ∀ i, k and

c) Y 12 = Y 23 = 10−2

3
ej90◦

�−1 (capacitances) and

Y 31 = 10−2

3
e−j90◦

�−1 (inductance)

Figures 6 and 7 show the results for the balanced

loads: Shown is in each case the x–y–plane together

with the positions of the lines (black drawn circles) and

at different points P around the lines the appropriate

plots of the (normalized) Poynting vectors S(P, t)ez vs.

time in figs. 6(a) and 7(a). In addition, the associated

time–averaged Poynting vectors S = Sz(P, t) are de-

picted in figs. 6(b) and 7(b).

In fig. 6(a), at each point in time and space the Point-

ing vectors are greater than or equal zero. That means

that in the whole space around the lines active power

is transmitted to the loads since the time–averaged

Poynting vectors S = Sz(P, t) are larger than zero (fig.

6(b)). This is the result we expect for pure active loads.

In fig. 7(a), at each point in time and space the Pointing

vectors oscillate around the t–axis. That means that

in the whole space around the lines no active power

is transmitted to the loads since the time–averaged

Poynting vectors S = Sz(P, t) equals zero (fig. 7(b)).

This is the result we expect for pure reactive loads.

But in a complete contrast to the previous results is the

outcome in case of pure reactive but now unbalanced

loads. Figure 8 shows the calculated results for that

case: At different points in space the Pointing vectors

partially oscillate around the t–axis, partially are shifted

towards positive values, partially towards negative val-

ues (fig. 8(a)). That means that in the space around the

lines partially active power is transmitted to the loads

and partially active power is transmitted from the loads

to the generator–side (fig. 8(b)).

4 DISCUSSION OF UNBALANCED, PURE

REACTIVE LOADS

From (1) it is clear that in the case of pure reactive (bal-

anced or unbalanced) loads no active power is trans-

mitted. But in spite of this, from (14) and from the re-

sults of the previous chapter follows that there are some

-10-20 0 10 20

-10

0

10

20

30

40

50

x 
m

y 
m

Sz(P,t) > 0

Sz(P,t) < 0
Sz(P,t) = 0

Fig. 9 Lines of constant time-averaged Poynting vectors

Sz(P, t) in the x-y-plane, corresponding to fig. 8(b) (in the

lower part of the plot at about x = y = 0 the positions of the

three lines are clearly identifiable). The thick red line repre-

sents Sz(P, t) = 0.
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(b) Time–averaged Poynting vector S = Sz(P, t) ≥ 0 in the

whole space around the lines

Fig. 6 Poynting vectors for pure active, balanced loads
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(a) Poynting vectors S(P, t)ez vs. time at different points P

around the lines (black drawn circles)
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(b) Time–averaged Poynting vector S = Sz(P, t) ≡ 0 in the

whole space around the lines

Fig. 7 Poynting vectors for pure reactive, balanced loads

few areas of space where Sz(P, t) is different from zero

and the calculated values are in the same order as in

the case of active loads in fig. 6(b).

The difference to fig. 6(b) is, that now there are subar-

eas in fig. 8(b) where Sz(P, t) has different directions:

partly in the positive z–direction, partly in the negative

one. With other words: There are areas where active

power is permanently transmitted to the reactive loads

whereas in other areas the same active power flows

permanently from the loads back to the generator. The

latter becomes more clear using a contour plot (fig. 9

on the preceding page): Each curve in the x -y-plane

represents the geometric loci of constant values of

Sz(P, t). At this, the (black) continuous lines represent

positive values of Sz(P, t), the dashed lines negative

values. The thick red line represents Sz(P, t) = 0. All

this happens — as a matter of course — such way that

the overall transmitted active power becomes zero, i.e.
∞∫

−∞

∞∫

−∞

Sz(P, t) dx dy = 0, as it must be.
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(b) Time–averaged Poynting vector S = Sz(P, t) > 0 or < 0 in

the space around the lines

Fig. 8 Poynting vectors for pure reactive, unbalanced loads

How do we have to interpret the results above? Why

exist areas in space where permanently active power

is transported to or from the reactive loads? As a lot of

calculations have shown (and as one can be also de-

duce from (14)), the described behavior is not restricted

to our special example: Similar results arise in all cases

of unbalanced reactive loads, independent of the pres-

ence of a ground plane or of special geometrical data.

It can also be shown that the observed effect arises

also for balanced loads but an unsymmetrical geometry

what can be deduced from (14), too. A detailed answer

to the questions above is given in [3]. Here it should

be pointed out only that in case of unbalanced loads or

in the case of asymmetric geometries the power will be

redirected inside the loads.

5 CONCLUSION

From transmission lines we know that energy transport

does not take place inside the lines (were especially the

electric field is small) but mainly outside the lines in the

surrounding area. Mathematically (and physically) this

is described by the Poynting vector. But the study of

energy transfer on three–pase high–voltage lines using

the Poynting vector led to a curious result: Even though

the load of a three–phase system is completely reac-

tive, there can be areas in space where active power

is transmitted (i.e. the time–averaged Poynting vector

is different from zero). Whether or not active power is

transmitted depends on whether or not the load is bal-

anced. In case of a balanced reactive load no active

power is transmitted.

In accordance with the fact that neither a balanced nor

an unbalanced reactive load can absorb active power,

it is arisen from our calculations (in case of unbalanced

loads) that in those areas where active power is trans-

mitted to the loads the overall power is as much as

large as in those areas where active power is transmit-

ted from the loads. With other words: In spite of pure

reactive loads the generator transmits and receives at

the same time but at different spacial positions active

power. And that leads to a second curiosity: Only an

unbalanced reactive load lets flow back the incoming

active power back to the source.

In summary: Since in case of lossless power lines as

well as lossless loads no power can be dissipated,

for the time–averaged Poynting vector S(P, t) holds:

div S(P, t) = 0.
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