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SUMMARY 

This paper builds on a previous study of the velocity sensed by a single laser vibrometer 

beam incident on a target in an arbitrary direction to predict the velocity sensed by multiple 

laser beams with arbitrary orientations. The usefulness of parallel beam arrangements is 

demonstrated and a concise new theory for the difference velocity sensitivity for two 

parallel beams is presented. Parallel beam arrangements for virtually unambiguous 

measurement of torsional vibration are presented along with arrangements that allow 

measurement of the pitch and yaw vibration to be derived. Resolution of individual pitch 

and yaw motions is shown not to be possible by any geometrical arrangement of the beams 

but a post-processing technique that enables the genuine pitch and yaw vibrations to be 

estimated from the measurements of the pitch and yaw vibration sets is demonstrated and 

validated experimentally in the laboratory. Measurements of pitch and yaw vibration are, 

for the first time, obtained from the crankshaft of a running diesel engine, enabling 

identification of the first natural frequency of the crankshaft in bending. 
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1. INTRODUCTION 

The principle of Laser Doppler Vibrometry (LDV) relies on the detection of the Doppler 

frequency shift in coherent light scattered from a moving target. By measuring the frequency 

shift, a time resolved measurement of the target velocity is made. The non-contact nature of 

Laser Vibrometers offers significant advantages over traditional contacting vibration 

transducers and measurements on hot, light or rotating components are often cited as 

important applications [1]. 

For rotational or angular vibrations, a non-contact transducer capable of measuring directly 

from any location on a structure, especially a rotor, would be a valuable asset and LDV offers 

this possibility. A variety of optical configurations have been proposed for angular vibration 

measurement on non-rotating structures. These include angular measurements derived from 

differential measurements [2], measurement of the change in position of a reflected laser 

beam [3] and continuously scanning regimes [4]. 

A parallel beam arrangement has been developed [5] and is available commercially for 

torsional vibration measurement on rotors. Torsional vibrations are often a source of problems 

in rotating machinery and can result in increased component wear, shaft cracking and fatigue. 

This parallel beam arrangement can also be used for measurement of other angular vibration 

components, either on rotating or non-rotating structures. One example application would be 

measurement of bending vibrations in the crankshafts of automotive engines which are 

thought to be linked with engine “rumble” [6], an unpleasant noise heard during acceleration. 

An investigation of the velocity sensed by a single laser beam incident on a rotating shaft 

vibrating in all six degrees-of-freedom [7] revealed that the measured velocity is made up of 

six separate vibration “sets”, each a combination of motion parameters. Using a single laser 

vibrometer it is possible to isolate the translational vibration “sets” (two radial and one axial) 

but it was shown not to be possible to isolate the three rotational vibration “sets”, those 
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including torsional and bending vibration. This paper extends this first analysis by 

concentrating on multiple laser beam configurations that enable the rotational vibration “sets” 

to be measured. The particular usefulness of parallel beam arrangements is demonstrated and 

a concise, new theory is given to describe the difference velocity sensitivity for such an 

arrangement. The results of this analysis offer the engineer a valuable tool for defining the 

velocity sensed in any proposed measurement configuration. 

Previous experience with LDV measurements made on rotors has highlighted how 

measurements can be ambiguous, affected by rotational vibration components perpendicular 

to the component it is intended to measure. Earlier studies have acknowledged cross-

sensitivities in torsional vibration measurements [8] for simplified target motions and the 

theory here confirms the conclusions of these earlier studies but additionally shows the effects 

of all vibration components of the arbitrary motion. 

Measurements are then made on the crankshaft of a running diesel engine with the intention 

of resolving pitch and yaw vibration from simultaneous measurements which individually 

show cross-sensitivity to pitch in an intended yaw measurement and vice-versa. Using a post-

processing technique, initially developed to resolve the cross-sensitivity in radial vibration 

measurements [9], these measurements are processed to give unambiguous estimation of non-

synchronous pitch and yaw vibration.  

 

2. TOTAL DIFFERENCE VELOCITY MEASURED BY PAIRS OF LASER BEAMS 

 

2.1 VELOCITY MEASURED BY A SINGLE LASER BEAM INCIDENT ON A 

ROTATING SHAFT 

A thorough analysis of this case has been presented previously [7]. As shown in Figure 1, the 

case considered is that of a rotating shaft, which can have arbitrary shape, undergoing an 
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arbitrary vibration requiring three translational and three rotational co-ordinates for 

description. If the illuminated axial element of the shaft can be assumed to be rigid, the 

velocity measured by a laser beam, orientated according to the angles α βand  (refer to 

Figure 2) and incident on a rotating shaft, is given by: 
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where ( )V V Vx y z, ,  and ( )a a ax y z, ,  are the translational vibration velocities and displacements 

of the origin O in the ( )x y z, ,  directions, Ω  is the total rotation speed of the axial shaft 

element (combining shaft rotation speed and any torsional vibration or speed fluctuation of 

the axial element), ( ) ,  , θ θ θx y z  are the angular vibration velocities of the shaft around the 

( )x y z, ,  axes, referred to as pitch, yaw and roll respectively, and ( )x y z0 0 0, ,  is the position of 

an arbitrary known point that lies along the line of the beam. It is usual to take ( )x y z0 0 0, ,  as 

the initial point of incidence on the structure at set-up, in which case the point might be 

referred to as lying in the “measurement plane”. 

Equation (1) allows the vibration engineer to be sure of vibration component sensitivity for 

any laser beam arrangement on any target, including a rotating shaft. It shows that the 

measured velocity is the sum of six terms, each the product of a combination of geometric 

parameters and a combination of motion parameters - the vibration “sets”. The six vibration 
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sets, shown in square brackets, are inseparable combinations of different motion parameters. 

This is an important result because it shows that, however a laser beam is aligned, only the 

combinations of motion parameters within the square brackets can be measured directly. 

Throughout the remainder of the discussion, the six vibration sets in equation (1) will be 

referred to by the vibration parameter in each group that might be regarded as the intended 

measurement. These are, in the order that they are written above in equation (1), the x radial, y 

radial, axial, pitch and yaw vibration sets and the rotation speed set which includes torsional 

vibration. 

Equation (1) can be simplified by setting z0 0=  so that the plane of the origin of the xyz axes 

and the “measurement plane” are coincident, since this is just a matter of definition. Isolation 

of any one of the six sets then requires appropriate choice of values for α β, , x y0 0and . 

Values for these geometric coefficients can be found that enable the radial and axial vibration 

sets to be isolated and this was set out in a preceding publication [7]. Isolation of the 

rotational vibration sets requires the geometric coefficients of the three translational vibration 

sets to equal zero i.e. cos cos cos sin sinβ α β α β= = = 0 , to which there is no solution. This 

means that none of the rotational vibration sets can be isolated using a single laser beam. 

 

2.2 MEASUREMENT OF ROTATIONAL VIBRATION SETS USING MULTIPLE 

LASER BEAMS 

The next logical step to take in attempting to measure the rotational vibration sets is to use 

two laser beams. In this section the particular usefulness of a pair of parallel beams will be 

demonstrated. In an interferometer it is the difference velocity that can be obtained most 

conveniently by heterodyning and so it is the difference velocity that will be analysed in this 

section. A sum velocity could effectively be obtained by re-orientating one of the incident 

beams by 180° and so, by examining the difference velocity for arbitrarily orientated beams, 
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all possible eventualities can be explored. Using equation (1) and assuming that the shaft is 

rigid between the axial elements probed by each beam, the difference in the velocity 

measured by two beams ∆U U Um m m= −1 2  can be written as: 
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where the subscripts ‘m1’ and ‘m2’ for the geometric parameters denote the particular beam.  

At this stage it can be noted that, in measurement circumstances where it is not possible to 

assume that the shaft is rigid between the axial elements probed by each beam, the approach 

to describe the difference in the velocity measured by the two beams would be also to denote 

the vibration sets in equation (1) according to the particular beam. Such a situation might be 

where one beam is incident on a vibrating turbine blade and the second is incident on the 

relatively rigid disc to which the blades are fixed. 

Returning to the situation described by equation (2) and the issue of isolating one of the six 

vibration sets, it is necessary to choose geometric parameters that make the coefficients of the 

remaining vibration sets equal to zero while having a non-zero coefficient for the desired set. 

To measure one of the rotational vibration sets successfully, the coefficients of the radial and 

axial vibration sets must always be zero. Solving the following three simultaneous equations: 
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gives solutions of βββ == 21 mm  and ααα == 21 mm . Geometrically these solutions equate 

to the beams being parallel and oriented in the same direction for the differential 

measurement or in opposite directions for a sum velocity derivation. In this latter case, the 

beams would be incident on opposite sides of the shaft which would usually make for an 

inconvenient optical arrangement. In either case, it can be concluded that to make a 

measurement immune to both axial and radial vibrations, parallel beams are required. For this 

reason, this paper will concentrate on the use of parallel beams. In practice it is possible to 

use two separate interferometers and obtain the difference in outputs electronically [10] or to 

combine beams and find the difference velocity optically as in the first arrangement proposed 

for torsional vibration measurement, the Laser Torsional Vibrometer (LTV) [5]. 

Cross-beam arrangements have been popular in the past for torsional vibration measurement 

[11] and they have also been used to determine the centre of rotation of rotating objects [12]. 

They differ from the arrangements described here in the method of light collection but the 

vibration sets to which measurements are sensitive can be investigated using the theory 

presented in this paper by considering the difference in velocity measured by two single laser 

beams at an angle to one another, with the light scattered from each incident point collected in 

direct back-scatter. Figure 3 shows the comparable arrangement of the beams for a torsional 

vibration measurement with both beams lying in the xy plane. Using equation (2) the 

difference in the velocity measured by the two single beams is: 

 

( )( ) ( )[ ]∆ Ω ΩU V x a am y z x x y z= + + − + +2 0sin  α θ θ θ  (4) 



7 

 

where α  is the half-angle between the two beams and the intersection of the beams at 

( )x y z0 0 0, ,  is considered as the known point for both beams. As expected, the velocity 

measured includes radial, axial, pitch and yaw components in addition to the desired torsional 

vibration component. The recognised sensitivity to Vy  provided much of the motivation for 

the development of the LTV. It is interesting to note that in this configuration it is not 

necessary for the beams to cross on the target surface for equation (4) to hold. In the usual 

cross-beam configuration the method of light collection made this important. Light was 

collected in any direction but in the same direction for each beam allowing detection at any 

convenient location. Compared to equation (4) the geometric coefficient was reduced by a 

factor of two but the velocity component sensitivity (within the square brackets) was the 

same. The reported use to determine the centre of rotation relied on minimising the mean 

value of ( )θ z x+Ω 0  and experience has indicated that this is an acceptable approach. Error in 

this process is incurred, however, by the presence of products of oscillatory terms with the 

same frequency introducing signal components with non-zero means. 

In the next section the difference velocity measured by a pair of parallel laser beams with 

arbitrary orientation and incident on a shaft undergoing arbitrary motion will be examined. 

 

2.3 CONCISE THEORY FOR THE DIFFERENCE VELOCITY MEASURED BY A 

PAIR OF PARALLEL LASER BEAMS 

The versatile approach developed previously [7] relied on the observation that although the 

point of incidence of the laser beam on the target might change position in space, it would 

always lie somewhere along the line of the beam itself. This simplified prediction of the 

vibrometer velocity sensitivity significantly compared to previous analyses and led to the 
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derivation of equation (1) from which equation (2) followed. The same approach will be 

applied to this two beam arrangement, even though it is possible to manipulate equation (2), 

because the resulting derivation is more concise and comprehensive than any previous 

analysis. 

The points P1 and P2, defined by the position vectors  r rP P1 2 and , are the points in space 

where the lines of the laser beams intersect the surface of the shaft. The velocities of P1 and 

P2, 
 

V VP P1 2 and , are the sums of the translational velocity of origin O, 


V0 , and the velocity of 

each point relative to O as a result of rotation about an instantaneous rotation axis passing 

through O at angular velocity 

ω : 

 

( )
   V V rP o P1 1= + ×ω  (5a) 

( )
   V V rP o P2 2= + ×ω  (5b) 

 

As the shaft vibrates and rotates the positions of the points of incidence, not only on the target 

but also in space, will change continuously especially if the target has a non-circular cross-

section. As Figure 4 shows, the changed positions of the incident points at any arbitrary 

instant of time are now written as: 

 

[ ]  
r r A p bP1 01 1= − +   (6a) 

[ ]  
r r A p bP2 02 2= − +   (6b) 

 

where  r r01 02 and  are the (constant) position vectors for known points on the line of each 

beam, 

A  is the (time-varying) translational vibration displacement of the origin and p1 and 

p2 are (time-varying) unknown quantities that are used to account for changes in the points of 
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incidence due to target shape and vibration. b  is the unit vector defining the direction of both 

beams since they are parallel. 

The difference in the velocity measured by the two beams, ∆U m , is the difference in the 

component of the velocity of the incident points in the direction of the incident beam. 

Assuming that 

ω  is maintained across the probed region (i.e. the shaft remains rigid across 

the probed region), by substituting equations (6a&b) into equations (5a&b), the difference 

velocity measured between the two beams is: 

 

( ) ( ) ( )[ ]∆U b V V b r r p p bm P P= ⋅ − = ⋅ × − + × −  
     

1 2 01 02 1 2ω ω  (7) 

 

Inspection of equation (7) shows that the second scalar triple product can be re-arranged to 

( ) ( )p p b b1 2− ⋅ ×

ω    which will always be zero, revealing that the measurement is always 

insensitive to any variation in the shape of the shaft. (Note that “shape” variation, as used in 

this paper, refers to variations in shaft dimensions and not to any dynamic shape variation). 

Equation (7) also demonstrates the immunity to translational motion offered by the parallel 

beam arrangement. The first scalar triple product in equation (7) is dependent on the 

difference in position of known points on the line of each beams. Since the choice of known 

position is arbitrary, the difference in position can be chosen so that   
r r d01 02− =  where 


d  is 

a vector in the plane of the beams perpendicular to b  and of magnitude equal to the 

perpendicular separation of the beams, d. The measured velocity can therefore be written 

simply as: 

 

( )∆U d bm = ⋅ ×
 
ω   (8) 
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In order to make equation (8) of more direct practical use, b d and 


 need to be described in 

terms of measurable parameters. Figure 2 shows that for a beam orientated according to the 

angles α βand : 

 

 cos cos  cos sin  sin b x y z= + −β α β α β  (9a) 

 

For 

d , consider an initial position in the yz plane inclined at an angle, γ , to z  as shown in 

Figure 5. After finite rotations first by β  and then by α , 

d  becomes: 

 

( ) ( ) ( )[ ]

d d x y z= + + − +cos sin cos sin sin  cos sin sin sin cos  cos cos γ β α γ α γ β α γ α γ β  (9b) 

 

This is easily obtained by repeated application of the transformation [13]: 

 

( ) ( )[ ] ( )   
′ = + − × × + ×r r n n r n r1 cos   sin ρ ρ  (9c) 

 

which describes the new position,  ′r , of a vector, r , following a rotation, ρ , about an axis 

defined by the unit vector, n . The three rotations γ β α, and  are finite and, therefore, this 

order of rotation must be maintained. 

Angular velocity can also be expanded into its components [7]: 

 

( ) ( ) ( )
ω θ θ θ θ θ= + + − + +     x y y x zx y zΩ Ω Ω  (9d) 
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which accounts for the change in direction of the shaft spin axis as the shaft tilts. Substituting 

equations (9a,b&d) into equation (8) enables the measured difference velocity to be written 

as: 

 

( )[ ][
( )[ ] [ ]]

∆ Ω

Ω Ω

U dm x y

y x z

= − +

+ + − + +

sin sin cos cos sin 

sin sin sin cos cos  sin cos 

γ β α γ α θ θ

γ β α γ α θ θ γ β θ
 (10a) 

 

which is consistent with equation (2), simplified according to the parallel beam arrangement 

under consideration. Equation (10a) also conveniently describes the difference velocity 

directly in terms of the perpendicular beam separation rather than the individual positions 

( )101010 ,, mmm zyx  and ( )202020 ,, mmm zyx . 

If the subtraction of the velocities is performed optically then it is, in fact, the modulus of the 

difference velocity that is measured. In addition, a practical optical configuration might 

include frequency shifts in one or both beams and this is the case for the novel configuration 

used in section 4. If shifts are included then the measured difference velocity is: 

 

[ ] ( )[ ][
( )[ ] [ ]]

∆ Ω

Ω Ω

U f f dm x y

y x z

= − + − +

+ + − + +

λ γ β α γ α θ θ

γ β α γ α θ θ γ β θ

2 1 2 sin sin cos cos sin 

sin sin sin cos cos  sin cos 
 (10b) 

 

where λ  is the laser wavelength and f f1 2 and  are the frequency shifts in beams one and two 

respectively. The shifts enable direction discrimination in the measured difference velocity. 

For brevity, the analysis will continue with acknowledgement of the ability to discriminate 

direction but without explicit inclusion of the shifts. 
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Isolation of the rotation speed set requires β γ π
= =0

2
and  so that: 

 

[ ]∆ ΩU dm z= +θ  (11) 

 

This shows that in order to make measurements of rotation speed, including torsional 

vibration, with immunity to other angular vibrations, the beams must be orientated 

perpendicular to the shaft rotation axis at any angle α . A previous study [8] highlighted the 

sensitivity of measurements made with the Laser Torsional Vibrometer to angular vibrations 

and assessed this effect on a typical measurement when β ≠ 0.  

Simultaneous measurements of the rotation speed set at two different axial locations on a 

flexible shaft can be used to provide a real-time measurement of shaft twist. This can then 

provide a measurement of shaft torque using the linear relationship between twist and torque. 

Isolation of the pitch and yaw vibration sets requires either γ π β π
= = ±

2 2
and , where the 

beams are incident on the end faces of the shaft, or γ = 0 , where the beams are incident on 

the side of the shaft. Notably, the geometric arrangements that allow measurement of the pitch 

and yaw vibration sets from the side of the shaft are independent of the angle β . With 

γ π β π α= = ± =
2 2

0, and  or γ α π
= =0

2
and , the pitch vibration set can be isolated: 

 

[ ]∆ ΩU dm x y= +θ θ  (12a) 

 

Similarly, with γ π β π α π
= = ± =

2 2 2
, and  or γ α= =0 0and , the yaw vibration set can be 

isolated: 



13 

 

[ ]∆ ΩU dm y x= −θ θ  (12b) 

 

Note the sensitivity to both pitch and yaw in both of these outputs. This is an important 

problem that can only be addressed by post-processing the outputs and this is described in 

section 4.2.  

 

3. MEASUREMENTS USING MULTIPLE PAIRS OF PARALLEL LASER BEAMS 

In many practical situations access to the shaft is restricted and it is not physically possible to 

align the beams at the angles set out in the previous section to isolate the required vibration 

set. The requirement for just one or two distinct values of α β or , rather than the possibility 

to measure at any orientation is very restrictive. For example, with this restriction, 

measurement of unambiguous rotation speed cannot be achieved from the end faces of the 

shaft which are often the only areas of access. An alternative optical arrangement capable of 

measuring the shaft rotation speed, pitch and yaw vibration sets from a variety of angles is, 

therefore, desirable. 

Section 2.2 concluded that the most sensible optical arrangement to use was a pair of parallel 

beams so that the measurement is immune to the axial and radial vibration sets. Therefore, it 

seems natural to consider using pairs of parallel beams in the search for a more versatile 

method of measuring the rotational vibration sets. In order to simplify the task, pairs of beams 

with equal separations will be considered. 

Using the velocity measured by a single pair of beams, given by equation (10a), the 

measurements from two pairs of beams can be formulated. With the measured velocities from 

each pair of beams available as an electrical signal, the possibility to add or subtract the 
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velocities exists conveniently. The sum, ( )Σ ∆U , and difference, ( )∆ ∆U , in the measured 

velocities are: 
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 (13b) 

 

where the subscripts denote the particular pair of beams and Sα α1 1= sin , Cα α1 1= cos  etc. 

While there are numerous geometric arrangements of the pairs of beams that would enable the 

desired vibration set to be measured, in practice the number of useful geometric arrangements 

is limited to those that can be reliably set-up with acceptable accuracy in angle measurement. 

The most convenient way to arrange the pairs of beams is symmetrically, with a plane 

bisecting the angle between the planes of each laser beam pair, either perpendicular to, or 

parallel to, the shaft rotation axis and with equal values of γ . With such arrangements, 

measurements from both the side and end faces of the shaft are still possible. The geometric 

values required to measure the vibration sets using two pairs of parallel beams are 

summarised in Table 1 and depicted in Figures 6a-c. 
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Table 1 shows three basic beam configurations exist. In the first, 
221
πγγ ==  and 

βββ =−= 21 , which means the beams are incident on the side of the shaft. In the second, 

221
πγγ ==  and ββπβ =−= 21 , which means the beams are incident on the end face of the 

shaft. As shown in Figures 6a-c, the desired angular vibration set is selected by choosing the 

appropriate value for α , while measurement of the rotation speed set can be achieved with 

any value of α α α1 2= = . This means that, for the same physical arrangement, measurements 

of the rotation speed set and one of the angular vibration sets can be obtained simultaneously 

simply by choosing to take both the sum and the difference in the velocities measured by each 

individual pair of beams. In the third configuration, 021 == γγ  and 021 == ββ , the beams 

are incident on the side of the shaft at different axial locations. This arrangement enables 

simultaneous measurement of the pitch and yaw vibration sets by taking both the sum and the 

difference in the velocities measured by each individual pair of beams. 

The theory presented in this paper has enabled all of the possible, useful geometric 

arrangements to be identified. These include the single arrangement used in a previous study 

of torsional and bending vibration measurement [8] in which two laser torsional vibrometers 

were used to assess bending vibration on a diesel engine crankshaft. In this previous study, 

simultaneous measurement of the yaw and rotation speed sets gave an indication of the 

bending motion of the crankshaft but resolution of the individual pitch and yaw motion was 

not possible. Resolution would first require simultaneous measurement of the pitch and yaw 

vibration sets followed by application of a technique developed to resolve individual vibration 

components in the similar area of radial vibration measurement [9]. This resolution process is 

also well suited to application to the bending vibration measurements and it is outlined in the 

following section. 
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4. MEASUREMENT OF BENDING VIBRATION AND RESOLUTION OF PITCH 

AND YAW MOTIONS 

 

4.1 PITCH & YAW METER 

In order to make simultaneous measurements of pitch and yaw vibration, eliminating the 

rotation speed set, a novel optical configuration was devised. The configuration shares basic 

features with the laser tiltmeter [2] and Figure 7 shows the beam arrangement which is 

designed for use on the end face of a shaft and incorporates three parallel laser beams. The 

beams are aligned with the shaft spin axis and the angular vibration derived by using 

interferometers to subtract optically the velocity measured by beams 1 and 2 for the pitch 

vibration set and beams 1 and 3 for the yaw vibration set.  

 

4.2 RESOLUTION OF VIBROMETER OUTPUTS  

From equations (12a&b), simultaneous measurements of the pitch, ( )Θx t , and yaw, ( )Θ y t , 

vibration sets yield:  

 

 ( ) Θ Ωx x yt = +θ θ  (14a) 

 ( ) Θ Ωy y xt = −θ θ  (14b) 

 

It is possible to manipulate equations (14a&b) to give the genuine angular vibration velocities 

 θ θx y and  in terms of the measurable quantities ( ) ,  ( )Θ Θx yt t  and Ω  by integration of the 

vibrometer outputs. If Ω  is considered constant then: 
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 ( )  ( )  ( )θ θ θy x x
t

t

y
t

t

yt t dt dt t= + +∫ ∫−Ω Ω Θ Ω Θ0
2

0 0

 (15) 

 

By expressing the vibratory motion as a Fourier series of M components, where the mth 

component θ ym
 has amplitude Am , angular frequency ω m  and phase φ m , a relationship 

between angular vibration velocity and the integral of angular vibration displacement at any 

one frequency can be found. 

 

( )θ
ω

ω φ
θ
ωω ω

y
m

m
m m

ym

m

dt A t
m

∫ =
= − + = −cos



2  (16) 

 

Substituting equation (16) into equation (15) and evaluating for the mth component i.e. at 

ω ω= m  gives: 

 

( )  ( )  ( )θ ω
ω ω

ym m y x
t

t

W t t dt
m

= +








∫

=

Θ Ω Θ
0

 (17a) 

 

where 

 

( )W m
m

m

ω ω
ω

=
−

2

2 2Ω
 (17b) 

 

Similarly, considering the pitch vibration: 
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( )  ( )  ( )θ ω
ω ω

xm m x y
t

t

W t t dt
m

= − +








∫

=

Θ Ω Θ
0

 (17c) 

 

Therefore, the genuine vibration velocity components can be resolved by evaluating the 

second bracketed terms of equations (17a&c) and then weighting by the frequency dependent 

function ( )W mω . These operations form the post-processing technique used for the 

experimental verification and the crankshaft vibration measurement. 

Inspection of equations (17a,b&c) shows that the weighting term is infinite and the bracketed 

term is zero for synchronous vibrations, i.e.ω m = Ω , which makes this technique unsuitable 

for synchronous vibration measurement. This also means that a gap in the resolved data at the 

synchronous frequency is unavoidable and a velocity-time trace cannot therefore be 

reconstructed. It is important to realise that this is not a limitation of the post-processing 

technique but a limitation on the use of LDV that occurs for both translational and rotational 

vibration measurements on rotors. At synchronous frequency, equations (14a&b) are no 

longer independent and cannot be solved as simultaneous equations. 

Further work is in progress to improve the estimates of  θ θx  and y  for the case where Ω  is 

not constant, for example, when a system has significant torsional vibration or during run-up 

and run-down. 

 

4.3 EXPERIMENTAL VERIFICATION 

An extensive verification of equations (14a&b) has already been reported [14] in which pitch 

and yaw motions were excited separately and the effect on the output from a dual beam laser 

vibrometer examined. Limiting the target motion to a single component minimises the 

complexity of the test rig required and removes the need for post-processing. Excellent 
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agreement was found with theory. In what follows, the experimental verification is taken to 

the next stage with pitch and yaw motions excited simultaneously and post-processing 

therefore essential. The test rig shown in Figure 8 creates the required simultaneous angular 

vibrations of a small test rotor in two orthogonal directions. Measurements of angular 

vibration were made directly from the rotor, using the laser instrument described in section 

4.1, and from the non-rotating motor housing by subtracting the outputs of two 

accelerometers separated by a known distance.  

The pitch and yaw halves of the laser instrument were calibrated, one at a time, by making the 

beams incidents on a small test shaft, rotating at (nominally) constant speed, with the plane of 

the beams perpendicular to the shaft rotation axis. A very convenient independent 

measurement of angular velocity is provided by the pseudo-random noise in the instrument 

output caused by the laser speckle phenomenon [15]. Voltage output per unit angular velocity 

was thus reliably provided. 

Two sets of measurements were made; firstly, with the rotor rotating at a nominal speed of 

20Hz, then repeated with the rotor non-rotating. Figures 9a&b show the ratio of the resolved 

laser and accelerometer measurements for the rotating measurements in the two orthogonal 

directions, normalised by the equivalent non-rotating measurements. Measurements of one 

angular vibration amplitude (nominally 50mrad/s) were combined with four phase differences 

(0°, ±90°, 180°) and eight vibration frequencies (10, 25 30, 40, 60, 80, 100 and 120Hz) with 

the mean and standard deviation of the ratio at each vibration frequency presented in the 

figures. 

In the non-rotating tests, the outputs from the pitch and yaw meter are straightforward to 

interpret and so these measurements give an indication of the genuine differences between the 

different points on the structure at which the laser based and accelerometer measurements 

were taken. In the rotating tests, the laser instrument outputs need to be post-processed with 
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agreement between the measurements now acting as validation of the theory leading to 

equations (14a&b) and the post-processing method itself. 

The resolved data from the rotating tests show good agreement with those from the non-

rotating tests with the differences attributed to genuine differences between the vibration 

response of the rotor assembly when rotating and not rotating. It is, of course, the very 

existence of these genuine differences that is the motivation behind the development of 

techniques for measurement directly from the rotor. It should be emphasised that the 

comparison involves measurements taken by necessity from different locations since the 

accelerometer obviously cannot be attached to the rotor. This compounds the difficulty in 

finding the right data for comparison with the measurements from the pitch and yaw meter. A 

particular feature worth special mention is the deviation of values close to the rotation 

frequency (20Hz) which can be linked to an increase in the sensitivity of the resolution 

process, through ( )W mω , to errors in the measurement of the shaft rotation speed [9]. 

 

4.4 DIESEL ENGINE CRANKSHAFT VIBRATION 

The pitch and yaw meter was aligned parallel to the crankshaft rotation axis of a four cylinder 

two litre diesel engine and incident on the end face of the crankshaft pulley to provide 

simultaneous measurements of the pitch and yaw vibration sets. In addition a LTV was used 

to measure the crankshaft rotation speed. The beams of the LTV were aligned as close to 

perpendicular to the rotation axis as access would allow to eliminate the sensitivity of that 

measurement to bending vibration. 

Figures 10a&b show waterfall plots of the resolved crankshaft pitch and yaw vibration 

respectively across a range of engines speeds, obtained by varying engine load while 

maintaining wide open throttle. The broad peak in Figure 10a around 450Hz corresponds to 

the first bending mode of the crankshaft confirmed using modal testing of the stationary 
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crankshaft [8]. These are the first known resolved measurements of crankshaft pitch and yaw 

to be taken on a running engine by non-contact means and without modification to the 

crankshaft. 

 

5. CONCLUSIONS 

This paper has presented the first comprehensive theory to describe the velocity sensed by 

multiple laser beams incident on a rotating structure requiring three translational and three 

rotational co-ordinates to describe its vibratory motion fully. The theory is equally applicable 

to measurements on targets with simpler motions such as non-rotating targets, allowing the 

vibration engineer to determine the vibration component sensitivity for any measurement with 

any arrangement of beams. 

Six separate vibration sets, each a combination of motion parameters, were identified in a 

previous study of vibration velocity sensitivity [7] which concluded that only the translational 

vibration sets could be isolated using a single laser beam. This paper extends this theory to 

include multiple beam arrangements which can isolate the rotational vibration sets and 

highlights the usefulness of parallel beam arrangements, demonstrating their insensitivity to 

the translational vibration sets. A concise new theory describing the difference velocity 

sensitivity for two parallel laser beams was presented and the geometric set-ups for 

measurement of the pitch, yaw and rotation speed sets established. A full range of versatile 

arrangements using two pairs of parallel beams was also presented as an alternative means to 

measure the pitch, yaw and rotation speed sets. 

Resolution of individual motion components within each vibration set has been shown not to 

be possible by any arrangement of laser beams [7] so the use of a post-processing technique 

originally developed to resolve steady state, non-synchronous radial measurements [9] was 

extended to this application. This enabled the genuine pitch and yaw vibrations to be 
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estimated from the measurements of the pitch and yaw vibration sets and the technique was 

validated experimentally in the laboratory. 

Application of the measurement and resolution of pitch and yaw vibration was then applied to 

the assessment of bending vibration in the crankshaft of a running diesel engine enabling, 

amongst other features, identification of the first natural frequency of the crankshaft in 

bending. As the first such measurements to be taken by non-contact means, the potential of 

laser technology for machinery diagnostics under challenging conditions is, once again, 

emphasised. 
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Desired 
Measurement 

Signal α 1  α 2  β 1  β 2  γ γ1 2=  Side or end 

of shaft? 

Figure 

 ( )∆ ∆U
 

0 0 β  −β  π / 2  Side 6a 

θ θx y+ Ω  ( )Σ ∆U
 

0 0 β  π β−  π / 2  End 6a 

 ( )∆ ∆U
 

α  −α  0 0 0 Side 6c 

 ( )Σ ∆U
 

α  π α−  0 0 0 Side 6c 

 ( )∆ ∆U
 

π / 2  π / 2  β  −β  π / 2  Side 6b 

θ θy x− Ω  ( )Σ ∆U
 

π / 2  π / 2  β  π β−  π / 2  End 6b 

 ( )Σ ∆U
 

α  −α  0 0 0 Side 6c 

 ( )∆ ∆U
 

α  π α−  0 0 0 Side 6c 

 ( )Σ ∆U
 

α  α  β  −β  π / 2  Side 6a&b 

θ z + Ω  ( )∆ ∆U
 

α  α  β  π β−  π / 2  End 6a&b 

 

Table 1: Configuration for measurement of pitch, yaw and rotation speed sets. 
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FIGURES 

 

Figure 1. Definition of a point P on a vibrating and rotating component undergoing 

arbitrary vibration. 

Figure 2. Orientation of laser beam, defining incident angles α and β. 

Figure 3. “Cross-beam velocimeter” measurement. 

Figure 4. Change in position vectors caused by target motion and shape variation. 

Figure 5. Orientation of parallel beam separation. 

Figure 6. Configurations of pairs of parallel laser beams for measurement of: 

a.  pitch and rotation speed sets. 

b.  yaw and rotation speed sets. 

c.  pitch and yaw sets. 

Figure 7. New pitch and yaw meter beam arrangement. 

Figure 8. Test rig to create simultaneous pitch and yaw motions. 

Figure 9.  Comparison of laser and accelerometer based measurements. 

a.  Measured pitch velocity, mean ± 1 standard deviation. 

b.  Measured yaw velocity, mean ± 1 standard deviation. 

Figure 10. Diesel engine crankshaft bending vibration 

a.  Resolved pitch vibration. 

b.  Resolved yaw vibration. 
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